Maximum Likelihood & Method of Moments Estimation

Patrick Zheng
01/30/14
Introduction

➤ **Goal**: Find a good POINT estimation of population parameter

➤ **Data**: We begin with a random sample of size \(n \) taken from the totality of a population.
 ➤ We shall estimate the parameter based on the sample

➤ **Distribution**: Initial step is to identify the probability distribution of the sample, which is characterized by the parameter.
 ➤ The distribution is always easy to identify
 ➤ The parameter is unknown.
Notations

- Sample: X_1, X_2, \ldots, X_n
- Distribution: X_i iid $f(x, \theta)$
- Parameter: θ

Example
- e.g., the distribution is normal ($f=$ Normal) with unknown parameter μ and $\sigma^2 (\theta = (\mu, \sigma^2))$.
- e.g., the distribution is binomial ($f=$ binomial) with unknown parameter p ($\theta = p$).
It’s important to have a good estimate!

- The importance of point estimates lies in the fact that many statistical formulas are based on them, such as confidence interval and formulas for hypothesis testing, etc..

- A good estimate should
 1. Be unbiased
 2. Have small variance
 3. Be efficient
 4. Be consistent
Unbiasedness

- An *estimator* is unbiased if its mean equals the parameter.
- It does not systematically overestimate or underestimate the target parameter.
- Sample mean(\bar{x})/proportion(\hat{p}) is an unbiased estimator of population mean/proportion.
Small variance

- We also prefer the sampling distribution of the estimator has a **small spread or variability**, i.e. small standard deviation.
Efficiency

An estimator $\hat{\theta}$ is said to be efficient if its Mean Square Error (MSE) is minimum among all competitors.

$$\text{MSE}(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = \text{Bias}^2(\hat{\theta}) + \text{var}(\hat{\theta}),$$

where $\text{Bias}(\hat{\theta}) = E(\hat{\theta}) - \theta$.

Relative Efficiency($\hat{\theta}_1, \hat{\theta}_2$) = $\frac{\text{MSE}(\hat{\theta}_2)}{\text{MSE}(\hat{\theta}_1)}$

- If >1, $\hat{\theta}_1$ is more efficient than $\hat{\theta}_2$.
- If <1, $\hat{\theta}_2$ is more efficient than $\hat{\theta}_1$.
Example: efficiency

- Suppose \(X_1, X_2, \ldots, X_n \) iid~ \(N(\mu, \sigma^2) \).
- If \(\hat{\mu}_1 = X_1 \), then
 \[
 \text{MSE}(\hat{\mu}_1) = \text{Bias}^2(\hat{\mu}_1) + \text{var}(\hat{\mu}_1) = 0 + \sigma^2.
 \]
- If \(\hat{\mu}_2 = \overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} \), then
 \[
 \text{MSE}(\hat{\mu}_2) = \text{Bias}^2(\hat{\mu}_2) + \text{var}(\hat{\mu}_2) = 0 + \sigma^2 / n.
 \]
- Since \(\text{R.E.}(\hat{\mu}_1, \hat{\mu}_2) = \frac{\text{MSE}(\hat{\mu}_2)}{\text{MSE}(\hat{\mu}_1)} = \frac{\sigma^2 / n}{\sigma^2} = \frac{1}{n} < 1 \),
 \(\hat{\mu}_2 \) is more efficient than \(\hat{\mu}_1 \).
Consistency

- An estimator $\hat{\theta}$ is said to be consistent if sample size n goes to $+\infty$, $\hat{\theta}$ will converge in probability to θ.

 $$\forall \varepsilon > 0, \ Pr(|\hat{\theta} - \theta| > \varepsilon) \to 0 \quad \text{as} \quad n \to +\infty$$

- Chebychev’s rule

 $$\forall \varepsilon > 0, \ Pr(|\hat{\theta} - \theta| \geq \varepsilon) \leq \frac{\text{MSE}(\hat{\theta})}{\varepsilon^2}$$

- If one can prove MSE of $\hat{\theta}$ tends to 0 when n goes to $+\infty$, then $\hat{\theta}$ is consistent.
Example: Consistency

- Suppose $X_1, X_2, \ldots, X_n \ iid \sim N(\mu, \sigma^2)$.

- Estimator $\hat{\mu} = \overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$ is consistent, since

$$\forall \varepsilon > 0, \ Pr(|\hat{\mu} - \mu| \geq \varepsilon) \leq \frac{E(\hat{\mu} - \mu)^2}{\varepsilon^2} = \frac{\text{MSE}(\hat{\mu})}{\varepsilon^2}$$

$$= \frac{\sigma^2}{n} \rightarrow 0 \quad \text{as } n \rightarrow +\infty$$
There are many methods available for estimating the parameter(s) of interest.

Three of the most popular methods of estimation are:

- The method of moments (MM)
- The method of maximum likelihood (ML)
- Bayesian method
1, The Method of Moments
The Method of Moments

- One of the oldest methods; very simple procedure

- What is Moment?

- Based on the assumption that sample moments should provide GOOD ESTIMATES of the corresponding population moments.
How it works?

THE METHOD OF MOMENTS PROCEDURE

Suppose there are l parameters to be estimated, say $\theta = (\theta_1, \ldots, \theta_l)$.

1. Find l population moments, $\mu_k', k = 1, 2, \ldots, l$. μ_k' will contain one or more parameters $\theta_1, \ldots, \theta_l$.
2. Find the corresponding l sample moments, $m_k', k = 1, 2, \ldots, l$. The number of sample moments should equal the number of parameters to be estimated.
3. From the system of equations, $\mu_k' = m_k', k = 1, 2, \ldots, l$, solve for the parameter $\theta = (\theta_1, \ldots, \theta_l)$; this will be a moment estimator of $\hat{\theta}$.

\[
\mu_k' = E[X^k]
\]

\[
m_k' = \frac{1}{n} \sum_{i=1}^{n} X_i^k
\]

\[
m_1' = \bar{X}; \quad m_2' = \frac{1}{n} \sum_{i=1}^{n} X_i^2
\]
Example: normal distribution

\[X_1, X_2, \ldots, X_n \ iid \sim N(\tau, \sigma^2). \]

step 1, \(\mu_1' = E(X) = \tau; \quad \mu_2' = E(X^2) = \tau^2 + \sigma^2. \)

step 2, \(m_1' = \bar{X}; \quad m_2' = (1/n) \sum_{i=1}^{n} X_i^2. \)

step 3, Set \(\mu_1' = m_1', \mu_2' = m_2', \) therefore,

\[\tau = \bar{X}, \]

\[\tau^2 + \sigma^2 = (1/n) \sum_{i=1}^{n} X_i^2 \]

Solving the two equations, we get \(\hat{\tau} = \bar{X}, \hat{\sigma}^2 = (1/n) \sum_{i=1}^{n} X_i^2 - \bar{X}^2 \)
Example: Bernoulli Distribution

Let X_1, \ldots, X_n be a random sample from a Bernoulli population with parameter p.

(a) Find the moment estimator for p.

Solution

(a) For the Bernoulli random variable, $\mu'_k = E[X] = p$, so we can use m'_1 to estimate p. Thus,

$$m'_1 = \hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

X follows a Bernoulli distribution, if

$$P(X = x) = \begin{cases} p & \text{if } x = 1 \\ 1 - p & \text{if } x = 0 \end{cases}$$
Example: Poisson distribution

Let X_1, \ldots, X_n be a random sample from a Poisson distribution with parameter $\lambda > 0$. Show that both

\[
\frac{1}{n} \sum_{i=1}^{n} X_i \quad \text{and} \quad \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)^2
\]

are moment estimators of λ.

Solution

We know that $E(X) = \lambda$, from which we have a moment estimator of λ as $\frac{1}{n} \sum_{i=1}^{n} X_i$. Also, because we have $\text{Var}(X) = \lambda$, equating the second moments, we can see that

\[
\lambda = E(X^2) - (EX)^2,
\]

so that

\[
\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i
\]

Both are moment estimators of λ. Thus, the moment estimators may not be unique. We generally choose \overline{X} as an estimator of λ, for its simplicity.
Note

- MME may not be unique.
- In general, minimum number of moment conditions we need equals the number of parameters.
- Question: Can these two estimators be combined in some optimal way?
 Answer: Generalized method of moments.
Pros of Method of Moments

- Easy to compute and always work:
 - The method often provides estimators when other methods fail to do so or when estimators are hard to obtain (as in the case of gamma distribution).

- MME is consistent.
Cons of Method of Moments

- They are usually not the “best estimators” available. By best, we mean most efficient, i.e., achieving minimum MSE.

- Sometimes it may be meaningless. (see next page for example)
Sometimes, MME is meaningless

Suppose we observe 3,5,6,18 from a $U(0,\theta)$.

Since $E(X) = \theta/2$,

MME of θ is $2 \bar{X} = 2 \frac{3+5+6+18}{4} = 16$, which is not acceptable, because we have already observed a value of 18.
2, The Method of Maximum Likelihood
The Method of Maximum Likelihood

- Proposed by geneticist/statistician: Sir Ronald A. Fisher in 1922

- **Idea**: We attempt to find the values of the parameters which would have most likely produced the data that we in fact observed.
What is likelihood?

Definition 5.3.1 Let $f(x_1, \ldots, x_n; \theta), \theta \in \Theta \subseteq \mathbb{R}^k$, be the joint probability (or density) function of n random variables X_1, \ldots, X_n with sample values x_1, \ldots, x_n. The likelihood function of the sample is given by

$$L(\theta; x_1, \ldots, x_n) = f(x_1, \ldots, x_n; \theta), \quad [= L(\theta), \text{in a briefer notation}].$$

We emphasize that L is a function of θ for fixed sample values.

- E.g., Likelihood of $\theta=1$ is the chance of observing X_1, X_2, \ldots, X_n when $\theta=1$.
How to compute Likelihood?

- If X_1, \ldots, X_n are discrete iid random variables with probability function $p(x, \theta)$, then, the likelihood function is given by

$$L(\theta) = P(X_1 = x_1, \ldots, X_n = x_n)$$

$$= \prod_{i=1}^{n} P(X_i = x_i), \quad \text{(by multiplication rule for independent random variables)}$$

$$= \prod_{i=1}^{n} p(x_i, \theta)$$

- and in the continuous case, if the density is $f(x, \theta)$, then the likelihood function is

$$L(\theta) = \prod_{i=1}^{n} f(x_i, \theta).$$
Example of computing likelihood (discrete case)

Suppose X_1, \ldots, X_n are a random sample from a geometric distribution with parameter p, $0 \leq p \leq 1$.

Solution
For the geometric distribution, the pmf is given $p(1-p)^{x-1}$, $0 \leq p \leq 1$, $x = 1, 2, 3, \ldots$.

Hence, the likelihood function is

$$L(p) = \prod_{i=1}^{n} \left[p(1-p)^{x_i-1} \right] = p^n (1-p)^{-n+\sum_{i=1}^{n} x_i}.$$
Example of computing likelihood (continuous case)

Let \(X_1, \ldots, X_n \) be iid \(N(\mu, \sigma^2) \) random variables. Let \(x_1, \ldots, x_n \) be the sample values. Find the likelihood function.

Solution

The density function for the normal variable is given by \(f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \). Hence, the likelihood function is

\[
L(\mu, \sigma^2) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_i-\mu)^2}{2\sigma^2} \right) = \frac{1}{(2\pi)^{n/2}\sigma^n} \exp\left(-\frac{\sum_{i=1}^{n} (x_i-\mu)^2}{2\sigma^2} \right).
\]
Definition of MLE

Definition 5.3.2 The maximum likelihood estimators (MLEs) are those values of the parameters that maximize the likelihood function with respect to the parameter \(\theta \). That is,

\[
L \left(\hat{\theta}; x_1, \ldots, x_n \right) = \max_{\theta \in \Theta} L \left(\theta; x_1, \ldots, x_n \right)
\]

where \(\Theta \) is the set of possible values of the parameter \(\theta \).

In general, the method of ML results in the problem of maximizing a function of single or several parameters. One way to do the maximization is to take derivative.
Procedure to find MLE

1. Define the likelihood function, $L(\theta)$.
2. Often it is easier to take the natural logarithm (ln) of $L(\theta)$.
3. When applicable, differentiate ln $L(\theta)$ with respect to θ, and then equate the derivative to zero.
4. Solve for the parameter θ, and we will obtain $\hat{\theta}$.
5. Check whether it is a maximizer or global maximizer.
Example: Poisson Distribution

Suppose X_1, \ldots, X_n are random samples from a Poisson distribution with parameter λ. Find MLE $\hat{\lambda}$.

Solution

We have the probability mass function

$$p(x) = \frac{\lambda^x e^{-\lambda}}{x!}, \quad x = 0, 1, 2, \ldots, \quad \lambda > 0.$$

Hence, the likelihood function is

$$L(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!} = \frac{\sum_{i=1}^{n} x_i}{\prod_{i=1}^{n} x_i!}.$$

Then, taking the natural logarithm, we have

$$\ln L(\lambda) = \sum_{i=1}^{n} x_i \ln \lambda - n\lambda - \sum_{i=1}^{n} \ln (x_i!)$$
Example cont’d

and differentiating with respect to λ results in

$$\frac{d \ln L(\lambda)}{d\lambda} = \frac{\sum_{i=1}^{n} x_i}{\lambda} - n$$

and

$$\frac{d \ln L(\lambda)}{d\lambda} = 0, \text{ implies } \frac{\sum_{i=1}^{n} x_i}{\lambda} - n = 0.$$

That is,

$$\lambda = \frac{\sum_{i=1}^{n} x_i}{n} = \bar{x}.$$

Hence, the MLE of λ is

$$\hat{\lambda} = \bar{X}.$$
Example: Uniform Distribution

Let X_1, \ldots, X_n be a random sample from $U(0, \theta), \theta > 0$. Find the MLE of θ.

Solution

Note that the pdf of the uniform distribution is

$$f(x) = \begin{cases} \frac{1}{\theta}, & 0 \leq x \leq \theta \\ 0, & \text{otherwise.} \end{cases}$$

Hence, the likelihood function is given by

$$L(\theta, x_1, x_2, \ldots, x_n) = \begin{cases} \frac{1}{\theta^n}, & 0 \leq x_1, x_2, \ldots, x_n \leq \theta \\ 0, & \text{otherwise.} \end{cases}$$
Example cont’d

\[\hat{\theta} = \max (X_i) = X_{(n)}. \]

FIGURE 5.1 Likelihood function for uniform probability distribution.
More than one parameter

As mentioned earlier, if the unknown parameter \(\theta \) represents a vector of parameters, say \(\theta = (\theta_1, \ldots, \theta_l) \), then the MLEs can be obtained from solutions of the system of equations

\[
\frac{\partial}{\partial \theta} \ln L (\theta_1, \ldots, \theta_n) = 0, \quad \text{for} \quad i = 1, \ldots, l.
\]

These are called the maximum likelihood equations and the solutions are denoted by \((\hat{\theta}_1, \ldots, \hat{\theta}_l)\).
Pros of Method of ML

- When sample size n is large ($n>30$), MLE is unbiased, consistent, normally distributed, and efficient ("regularity conditions")
 - "Efficient" means it produces the minimum MSE than other methods including Method of Moments
- More useful in statistical inference.
Cons of Method of ML

- MLE can be highly biased for small samples.
- Sometimes, MLE has no closed-form solution.
- MLE can be sensitive to starting values, which might not give a global optimum.
 - Common when θ is of high dimension
How to maximize Likelihood

1. Take derivative and solve analytically (as aforementioned)

2. Apply maximization techniques including Newton’s method, quasi-Newton method (Broyden 1970), direct search method (Nelder and Mead 1965), etc.
 - These methods can be implemented by R function optimize(), optim()
Newton’s Method

- a method for finding successively better approximations to the roots (or zeroes) of a real-valued function.

 - Pick an x close to the root of a continuous function $f(x)$
 - Take the derivative of $f(x)$ to get $f'(x)$
 - Plug into $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, f'(x_n) \neq 0$
 - Repeat until converges where $x_{n+1} \approx x_n$
Example

- Solve $e^x - 1 = 0$
- Denote $f(x) = e^x - 1$; let starting point $x_0 = 0.1$
- $f'(x) = e^x$

- $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
 - $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0.1 - \frac{e^{0.1} - 1}{e^{0.1}} = 0.0048374$
 - $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = \ldots$

- Repeat until $|x_{n+1} - x_n| < 0.00001$, $x_{n+1} = 7.106 \times 10^{-17}$
Example: find MLE by Newton’s Method

- In Poisson Distribution, find $\hat{\lambda}$ is equivalent to
 - maximizing $\ln L(\lambda)$
 - finding the root of $\frac{d \ln L(\lambda)}{d \lambda} = \frac{\sum x}{\lambda} - n$
- Implement Newton’s method here,
 - define $f(\lambda) = \frac{d \ln L(\lambda)}{d \lambda} = \frac{\sum x}{\lambda} - n$
 - $f'(\lambda) = -\frac{\sum x}{\lambda^2}$
 - $\lambda_{n+1} = \lambda_n - \frac{f(\lambda_n)}{f'(\lambda_n)}$
 - Given x_1, x_2, \ldots, x_m and λ_0, we can find $\hat{\lambda}$.
Example cont’d

- Suppose we collected a sample from $\text{Poi}(\lambda)$:

 $18,10,8,13,7,17,11,6,7,7,10,10,12,4,12,4,12,10,7,14,13,7$

- Implement Newton’s method in R:

```r
# use newton method to find lamda mle of poisson
# x here is data, l here is lamda
x<-c(18,10,8,13,7,17,11,6,7,7,10,10,12,4,12,4,12,10,7,14,13,7)
n<-length(x)
l<-NULL
l[1]<-8  # give initial value of lamda
i<-1
repeat{
  l[i+1]<-l[i]-(-n+sum(x)/l[i])/(-sum(x)/(l[i]^2))  # iterative equation
  diff<-abs(l[i+1]-l[i])  # set up stopping criteria
  i<-i+1
  if ( diff < 0.0001) { break }
}
> l

$\lambda_{n+1} = \lambda_n - \frac{f(\lambda_n)}{f'(\lambda_n)}$
```
Use R function optim()

\[f(\lambda) = \sum \frac{x}{\lambda} - n \]

Typo! This should be -\lnL(\lambda) instead.

```r
poi <- function(l) {
  x <- c(18, 10, 8, 13, 7, 17, 11, 6, 7, 7, 10, 10, 12, 4, 12, 4, 12, 10, 7, 14, 13, 7)
  n <- length(x)
  -(n*l+sum(x)*log(l))  # as optim can only minimize a function
                         # so we add a minus sign to the target function
}
optim(7, poi, lower=0.1, upper=Inf, method="L-BFGS-B")
$par
[1] 9.954545
```
The End!

Thank you!