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Building Blocks

To apply probability theory, we need to define three objects:

Sample Space: the set of all possible outcomes of an experiment.
Usually denoted Ω.

A collection of subsets of Ω for which we can calculate probabilities.
Usually denoted S
A probability function, P, which maps objects in S to the interval
[0, 1].
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Building Blocks

Example: Flip a fair coin twice.

Sample Space: Ω = {HH,HT,TH,TT}
A collection of subsets:

S =


{∅} {HH} {HT} {TH}
{TT} {HH,HT} {HH,TH} {HH,TT}
{HT,TH} {HT,TT} {TH,TT} {HH,HT,TH}
{HH,HT,TT} {HH,TH,TT} {HT,TH,TT} {HH,HT,TH,TT}


A probability function, P : S → [0, 1]:

Used to calculate expressions such as:

P ({HH}) = the probability that the result of the experiment is HH
P ({HH,HT,TT}) = the probability that the result of the experiment is
HH or HT or TT.
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Events

Elements of S are called events.
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Events

Elements of S are called events.

Two events A1 and A2 are said to be mutually exclusive if they
cannot happen simultaneously. That is, if A1 and A2 are disjoint.

Example: {HH} and {HT} are mutually exclusive because
{HH} ∩ {HT} = ∅

Example: {HH,HT} and {HH,TT} are not mutually exclusive because

{HH,HT} ∩ {HH,TT} = {HH} 6= ∅
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Choosing P

Selection of the probability function P is up to us. There are a few
restrictions on P which constitute the main axioms of probability:

(1) P (∅) = 0. The probability of obtaining nothing from the experiment
is zero.

(2) P (Ω) = 1. We are certain to obtain something from the experiment.

(3) If A1,A2,A3, . . . is a sequence of disjoint events, then

P

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

P (Ak)
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Unpacking (3)

Condition (3) on P is sometimes called a condition of countable additivity :

If A1,A2,A3, . . . is a sequence of disjoint events, then

P

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

P (Ak)
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Unpacking (3)

Condition (3) on P is sometimes called a condition of countable additivity :

If A1,A2,A3, . . . is a sequence of disjoint events, then

P

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

P (Ak)

Motivation for (3): If events have no outcomes in common, the likelihood
that any of the events occurs is the sum of the likelihoods for each
individual event.
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Visualization of (3)

Figure: Disjoint Events in Ω

A1

A2

Ω

A3

Since A1, A2, and A3 have no outcomes in common, we expect the
likelihood of observing A1 or A2 or A3 to be: P (A1) + P (A2) + P (A3).
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Visualization of (3)

Figure: Disjoint Events in Ω

A1 A2 A3 A4 · · ·

Ω

Since A1,A2, . . . have no outcomes in common, we expect the likelihood of
observing any one of these events to be

∑∞
k=1 P (Ak).
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Non-Disjoint Events

Figure: Non-Disjoint Events in Ω

A1 A2

P (A1 ∪ A2) =

Matt Arthur (UCR GradQuant) Probability Theory April 15, 2021 12 / 1



Non-Disjoint Events

Figure: Non-Disjoint Events in Ω

A1 A2

P (A1 ∪ A2) = P (A1)
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Non-Disjoint Events

Figure: Non-Disjoint Events in Ω

A1 A2

P (A1 ∪ A2) = P (A1) + P (A2)
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Non-Disjoint Events

Figure: Non-Disjoint Events in Ω

A1 A2

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)
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Non-Disjoint Events

This gives the general formula:

P (A1 ∪ A2) = P (A1) + P (A2)− P (A1 ∩ A2)

This works whether or not the events are mutually exclusive. If A1 and A2

are disjoint, then A1 ∩ A2 = ∅ and so P (A1 ∩ A2) = 0.
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Conditional Probability

Suppose we have two events A1,A2 ⊂ Ω.

We know that A1 has occurred. Should this change our thoughts about
the likelihood that A2 has occurred?
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Conditional Probability

Suppose we have two events A1,A2 ⊂ Ω.

We know that A1 has occurred. Should this change our thoughts about
the likelihood that A2 has occurred? Sometimes!
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Conditional Probability

Figure: Non-Disjoint Events in Ω

A1 A2

If we have no information about whether A1 has occurred, then the
likelihood that A2 has occurred is simply P (A2).
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Conditional Probability

Figure: Non-Disjoint Events in Ω

A1 A2

If we know that A1 has occurred, then the likelihood of A2 should be the

“proportion” of the A2’s likelihood that also lies in A1:
P (A2 ∩ A1)

P (A1)
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Conditional Probability

We write “the probability of A2 given that A1 has occurred” as

P (A2 | A1) =
P (A2 ∩ A1)

P (A1)
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Conditional Probability

We write “the probability of A2 given that A1 has occurred” as

P (A2 | A1) =
P (A2 ∩ A1)

P (A1)

From which we obtain the important relationship:

P (A1 ∩ A2) = P (A2 | A1)P (A1)
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Partitioning the Sample Space

Figure: Partitioning Ω

A

F1 F2 F3 F4
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Partitioning the Sample Space

Figure: Partitioning Ω

F1

A

F2 F3 F4
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Partitioning the Sample Space

Figure: Partitioning Ω

F1 F2 F3 F4

A ∩ F1 A ∩ F2

A ∩ F3

A ∩ F4
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Partitioning the Sample Space

F1,F2,F3,F4 are said to form a partition of the sample space Ω:

F1 ∪ F2 ∪ F3 ∪ F4 = Ω

F1,F2,F3,F4 are disjoint.

Matt Arthur (UCR GradQuant) Probability Theory April 15, 2021 26 / 1



Partitioning the Sample Space

F1,F2,F3,F4 are said to form a partition of the sample space Ω:

F1 ∪ F2 ∪ F3 ∪ F4 = Ω

F1,F2,F3,F4 are disjoint.

Note that the following events are also disjoint:

A ∩ F1,A ∩ F2,A ∩ F3,A ∩ F4
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Partitioning the Sample Space

Note that the following events are also disjoint:

A ∩ F1,A ∩ F2,A ∩ F3,A ∩ F4

Therefore, we can write P (A) as

P (A) = P (A ∩ F1) + P (A ∩ F2) + P (A ∩ F3) + P (A ∩ F4)

= P (A | F1)P (F1) + P (A | F2)P (F2) + P (A | F3)P (F3) + P (A | F4)P (F4)
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Partitioning the Sample Space

P (A) = P (A ∩ F1) + P (A ∩ F2) + P (A ∩ F3) + P (A ∩ F4)

= P (A | F1)P (F1) + P (A | F2)P (F2) + P (A | F3)P (F3) + P (A | F4)P (F4)

Therefore, we can determine P (A) if we know:

1. The unconditional probability of each Fi

2. The conditional probability of A, given each Fi .

The expressed for P (A) above is called the law of total probability
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Law of Total Probability

Suppose F1,F2, . . . ,Fn are disjoint and
n⋃

k=1

Fk = Ω. Then,

P (A) =
n∑

i=1

P (A | Fi )P (Fi )
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Bayes Rule

Suppose we have a partition of Ω: F1,F2, . . . ,Fn.

We would like to calculate P (Fi | A) for all i = 1, . . . , n. But we only have
the following information:

1. P (A | Fi ) for all i = 1, . . . , n

2. The unconditional probabilities, P (Fi ) for i = 1, . . . , n.

How can we do this?
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Bayes Rule

How can we do this?

P (Fi | A) =
P (Fi ∩ A)

P (A)

=
P (A ∩ Fi )

P (A)
=

P (A | Fi )P (Fi )

P (A)

=
P (A | Fi )P (Fi )∑n
i=1 P (A | Fi )P (Fi )

(∗)

(∗) is called Bayes Rule
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Bayes Rule

Bayes Rule: Suppose F1,F2, . . . ,Fn form a partition of Ω. Then for each
i = 1, . . . , n:

P (Fi | A) =
P (A | Fi )P (Fi )∑n
i=1 P (A | Fi )P (Fi )
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Bayes Rule: Example

Suppose we have three drawers.

Drawer I contains 2 Gold Coins.

Drawer II contains 1 Gold Coin and 1 Silver Coin.

Drawer III contains 2 Silver Coins.

I draw a drawer at random. From that drawer, I randomly draw a coin. I
give you the coin, and you find that it is a Gold Coin.

What is the probability that I drew this coin from Drawer I?
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Bayes Rule: Example

G

G

G

S

S

S

I II III
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Bayes Rule: Example

Let D1, D2, and D3 denote the events that I chose drawers I, II, and III,
respectively. Let G and S denote the events that I chose a Gold and Silver
coin, respectively. We wish to calculate:

P (D1 | G )

Since the drawer was chosen randomly, we assume that
P (D1) = P (D2) = P (D3) = 1/3. We also know the conditional
probabilities:

P (G | D1) = 1

P (G | D2) = 1/2

P (D | D3) = 0
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Bayes Rule: Example

Calculate using Bayes Rule:

P (D1 | G ) =
P (G | D1)P (D1)

P (G | D1)P (D1) + P (G | D2)P (D2) + P (G | D3)P (D3)

=
(1)13

(1)13 + 1
2

(
1
3

)
+ (0)13

=
1
3

1
3 + 1

6

=
2

3

Thus, it is more likely that I picked the coin from Drawer I, if we know
that the coin is Gold.
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Independence

Suppose A1 and A2 are two events in our sample space. Sometimes, our
feelings about the likelihood of A1 will not change if we know that A2 has
occurred. Mathematically speaking:

P (A1 | A2) = P (A1)

In this case, the events A1 and A2 are said to be independent
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Independence

Suppose A1 and A2 are two events in our sample space. Sometimes, our
feelings about the likelihood of A1 will not change if we know that A2 has
occurred. Mathematically speaking:

P (A1 | A2) = P (A1)

In this case, the events A1 and A2 are said to be independent

Note that

P (A1 | A2) = P (A1)⇔ P (A1 ∩ A2)

P (A2)
= P (A1)⇔ P (A1 ∩ A2) = P (A1)P (A2)

this is traditionally given as the definition of independence for events A1

and A2/
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Independence

Definition: Two events A1 and A2 are said to be independent if

P (A1 ∩ A2) = P (A1)P (A2)
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Random Variables

Often, we want to associate elements in our sample space with numerical
outcomes.

Example: Perhaps we are interested in the number of heads obtained in
two flips of a fair coin. Our sample space for this experiment was given
earlier as

Ω = {HH,HT,TH,TT}

Each element of Ω is associated with some number of heads:

HH→ 2

HT→ 1

TH→ 1

TT→ 0

The number of heads obtained is said to be a random variable because it
maps elements of the sample space to the real number line.
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Random Variables

In general, a random variable X is a measurable function X : Ω→ R.

Measurable:

For any subset of the form (−∞, x ]. Define:

Cx = X−1
(

(−∞, x ]
)

= {ω ∈ Ω | X (ω) ∈ (−∞, x ]} ⊂ Ω.

We must be able to calculate P (Cx) for any x ∈ R.
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Random Variables

Notation: For any random variable, X , and any A ⊂ R, we typically define

P (X ∈ A) = P
(
X−1(A)

)
= P ({ω ∈ Ω | X (ω) ∈ A})

If A is a singleton set, A = {a}, it is common to write:

P (X = a) = P ({ω ∈ Ω | X (ω) = A})

We can interpret this as the “the probability that the variable X assumes a
value in A”
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Distribution Function of a Random Variable

Based on our assumptions about X , we must be able to define P (X ≤ x)
for all x ∈ R. We can think of this probability as a function of x . Define

FX (x) = P (X ≤ x)

FX is called the Distribution Function of X . Every random variable has a
distribution function.
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Distribution Function of a Random Variable

Define
FX (x) = P (X ≤ x)

FX is called the Distribution Function of X . Every random variable has a
distribution function.

It can be shown that FX has the following properties:

1. limx→∞ FX (x) = 1

2. limx→−∞ FX (x) = 0

3. limx→a+ FX (x) = FX (a) (right-continuity)

4. FX is nondecreasing.
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Distribution Function of a Random Variable

The distribution function plays a very important role in probability theory:

Random variables are uniquely identified by their distribution function.

Distribution functions assign probabilities to events of interest—They
define the function P at all subsets of Ω that are of interest to us.

Some families distribution functions are used so often they are given
special names.
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Distribution Functions: Example

The following is a valid distribution function:

FX (x) =

{
1− e−x x > 0

0 x ≤ 0

1. limx→∞ FX (x) = 1

2. limx→−∞ FX (x) = 0

3. limx→a+ FX (x) = FX (a) (right-continuity)

4. FX is nondecreasing.
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Discrete Random Variables

A random variable that assumes a positive probability on a countable
number of points is called a discrete random variable.

Example: X = number of heads in two tosses of a fair coin.

Since the coin is fair, all 4 outcomes in the sample space are equally
likely: {HH,HT,TH,HH}
Then, we have

P (X = 2) = 1
4

P (X = 1) = 1
2

P (X = 0) = 1
4
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Discrete Random Variables: Exercise

Since X is a random variable, it must have a distribution function. How
would we sketch the distribution function of X?
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Discrete Random Variables: Exercise

Since X is a random variable, it must have a distribution function. How
would we sketch the distribution function of X?

We need to calculate P (X ≤ x) for all values of x .

P (X = 2) = 1
4

P (X = 1) = 1
2

P (X = 0) = 1
4
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Discrete Random Variables: Exercise

Figure: Sketch of Distribution Function for X

-1 0 1 2 3 4 5
0

0.25

0.50

0.75

1

Note: We can recover the probabilities: P (X = k), k = 0, 1, 2 by
calculating the size of the “jump” at k .
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Discrete Random Variables: Formally Defined

Definition: A random variable is said to be discrete if there is some
countable set A ⊂ R such that P (X ∈ A) = 1.

A is defined to be the set of all points at which x has positive probability:

A = {k ∈ R | P (X = k) > 0}

The function P (X = k) is called the Probability Mass Function (PMF) of
the discrete random variable. From the definition above, must have:∑

k∈A
P (X = k) = 1
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Mass Functions: Interpretation

PMFs allow us to calculate probabilities for subsets of our sample space.
In this way,
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Sidebar: Combinations

The number of ways to select k objects from a group of n is(
n

k

)
=

n!

(n − k)!k!
, 0 ≤ k ≤ n

where m! = m(m − 1)(m − 2)× · · · × (2)(1).
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Binomial Distribution

Generalizing our two-flip coin example:

Suppose we have a biased coin, for which the probability of heads on
a particular flip is p.

Suppose we flip the coin n times, and each flip is independent of all
other flips.

Let X = number of heads in n flips.

How could we calculate P (X = k), for k = 0, 1, 2, . . . , n?
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Binomial Distribution

How could we calculate P (X = k), for k = 0, 1, 2, . . . , n?

If the probability of heads on a particular flip is p, then the probability
of tails is 1− p.

There are

(
n

k

)
possible arrangements of k heads in n flips.

The probability of observing any one of these arrangements is
pk(1− p)n−k—since there are k heads, n − k tails, and all flips are
independent.
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Binomial Distribution

How could we calculate P (X = k), for k = 0, 1, 2, . . . , n?

If the probability of heads on a particular flip is p, then the probability
of tails is 1− p.

There are

(
n

k

)
possible arrangements of k heads in n flips.

The probability of observing any one of these arrangements is
pk(1− p)n−k—since there are k heads, n − k tails, and all flips are
independent.

Therefore,

P (X = k) =

(
n

k

)
pk(1− p)n−k
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Binomial Distribution

Let X be a random variable representing the number of successes in n
independent trials, each having probability of success p. Then X is said to
be a Binomial Random Variable, and

P (X = k) =

(
n

k

)
pk(1− p)n−k

for k = 0, 1, 2, . . . , n
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Geometric Distribution

Suppose we flip a coin repeatedly. The probability of heads on any
particular flip is p. The flips are independent.

Let X be the number of trials until the first head appears.

Matt Arthur (UCR GradQuant) Probability Theory April 15, 2021 59 / 1



Geometric Distribution

Suppose we flip a coin repeatedly. The probability of heads on any
particular flip is p. The flips are independent.

Let X be the number of trials until the first head appears.

In this case, X could take infinitely many values.

Let’s calculate P (X = k) for k = 1, 2, 3, . . .
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Geometric Distribution

Suppose we flip a coin repeatedly. The probability of heads on any
particular flip is p. The flips are independent.

Let X be the number of trials until the first head appears.

To obtain X = k, we need k − 1 tails followed by 1 head. Since the flips
are independent, this probability is given by

(1− p)k−1p, k = 1, 2, 3, . . .
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Geometric Distribution

Definition: Consider a sequence of independent trials each having
probability p of success. Let X denote the number of trials until the first
success. X is called a geometric random variable, and

P (X = k) = p(1− p)k−1, k = 1, 2, 3, . . .
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Continuous Distributions

Earlier, we claimed the following was a valid distribution function:

FX (x) =

{
1− e−x x > 0

0 x ≤ 0
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Continuous Distributions

Figure: Plot of FX (x) =

{
1− e−x x > 0

0 x ≤ 0
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Continuous Distributions

This looks much different from the distribution function we sketched for
the two-coin flip experiment!

In the discrete case, we were table to recover P (X = x) by measuring
the “jump size” of the distribution function at the point x .

But this distribution function has no jumps...
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Continuous Distributions

This looks much different from the distribution function we sketched for
the two-coin flip experiment!

In the discrete case, we were table to recover P (X = x) by measuring
the “jump size” of the distribution function at the point x .

But this distribution function has no jumps...

In fact, the function above tells us that P (X ∈ (0,∞)) = 1, and for
any a <∞, P (X ∈ (0, a)) < 1. Thus, there is no countable set A for
which P (X ∈ A) = 1.

Therefore, X is not discrete.

Matt Arthur (UCR GradQuant) Probability Theory April 15, 2021 66 / 1



Continuous Distributions

Therefore, X is not discrete. In such cases, it makes more sense to
consider probability per-unit length. Define

fX (x) = lim
ε→0

P (x − ε < X < x + ε)

2ε

= lim
ε→0

P (X < x + ε)− P (X < x − ε)
2ε

= lim
ε→0

FX (x + ε)− FX (x − ε)
2ε

=
dFX
dx
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Continuous Distributions

Therefore, X is not discrete. In such cases, it makes more sense to
consider probability per-unit length. Define

fX (x) = lim
ε→0

P (x − ε < X < x + ε)

2ε

= lim
ε→0

P (X < x + ε)− P (X < x − ε)
2ε

= lim
ε→0

FX (x + ε)− FX (x − ε)
2ε

=
dFX
dx

fX (x) is called the probability density function (PDF) of a random variable
X.
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Continuous Distributions

In our example the distribution function is:

FX (x) =

{
1− e−x x > 0

0 x ≤ 0

so the density function is:

fX (x) =

{
e−x x > 0

0 x ≤ 0
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Continuous Distributions

Definition: A random variable X is said to be absolutely continuous if X
has a density function which is nonzero on some subset of R.

Not all random variables have nonzero density functions. For example, the
distribution functions for discrete random variables are step functions.
Thus, the PDFs are zero everywhere.

Since distribution functions are nondecreasing, PDFs are always
nonnegative.
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For any set AR, we can determine P (X ∈ A) by integrating the PDF:

P (X ∈ A) =

∫
A
f (x)dx

Probabilities are interpreted as the area under fX within A.
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Density Functions: Interpretation

We have seen that PDFs and PMFs are related to the distribution function
of a random variable.

For absolutely continuous random variables:

fX (x) = F ′X (x) and FX (x) =

∫ x

−∞
fX (x)dx

PDFs do not uniquely define a random variable’s distribution since
they could be changed at countable number of points and still result
in the same distribution function.
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Density Functions: Interpretation

We have seen that PDFs and PMFs are related to the distribution function
of a random variable.

For absolutely continuous random variables:

fX (x) = F ′X (x) and FX (x) =

∫ x

−∞
fX (x)dx

PDFs do not uniquely define a random variable’s distribution since
they could be changed at countable number of points and still result
in the same distribution function.

However, changing fX at a countable number of points would also not
affect how fX is used to calculate probabilities. Therefore, we often use fX
to identify distributions of random variables.
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Exponential Distribution

The distribution function for the exponential distribution is given by

FX (x) =

{
1− e−x/θ x > 0

0 x ≤ 0

This implies a PDF of

fX (x) =

{
1
θ e
−x/θ x > 0

0 x ≤ 0
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Exponential Distributions

Figure: Plot of Exponential PDF for Various θ
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Example

Suppose X is exponential with PDF

fX (x) = e−x , x > 0

Calculate P (2 < X < 3)
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Example

Suppose X is exponential with PDF

fX (x) = e−x , x > 0

Calculate P (2 < X < 3)

P (2 < X < 3) =

∫ 3

2
e−xdx = −e−x

∣∣∣3
2

≈ 0.08555
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Normal Distributions

The normal distribution is one of the most popular and frequently-used
distributions in statistics. We usually write X ∼ N

(
µ, σ2

)
to indicate that

X has a normal distribution with mean µ and variance σ2

Mean: Center of the distribution of X .

Variance: A measure of spread around the mean.
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Normal Distributions

The normal distribution is one of the most popular and frequently-used
distributions in statistics. We usually write X ∼ N

(
µ, σ2

)
to indicate that

X has a normal distribution with mean µ and variance σ2

Mean: Center of the distribution of X .

Variance: A measure of spread around the mean.

The PDF for X is

fX (x) =
1√
2πσ

exp

{
−(x − µ)2

2σ2

}
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Normal Distributions

Figure: Plot of Normal PDF for Various µ
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Normal Distributions

Figure: Plot of Normal PDF for Various σ2
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Connection to Statistics

In statistics, we observe lots of experimental output. For example, suppose
x1, x2, . . . , xn are data points from an experiment.

We assume that x1, x2, . . . , xn are subject to some sampling error—if we
repeat the same experiment again, we’ll probably get different data points,
for unexplainable reasons.

We model this phenomenon by assuming x1, . . . , xn are observed values
from some random variables X1, . . . ,Xn.
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Connection to Statistics

In statistics, we observe lots of experimental output. For example, suppose
x1, x2, . . . , xn are data points from an experiment.

We assume that x1, x2, . . . , xn are subject to some sampling error—if we
repeat the same experiment again, we’ll probably get different data points,
for unexplainable reasons.

We model this phenomenon by assuming x1, . . . , xn are observed values
from some random variables X1, . . . ,Xn.

We often won’t know the exact distribution of X1, . . . ,Xn.

We want to use the information in the observed data x1, . . . , xn to
make inference about the underlying distribution of X1, . . . ,Xn.
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Connection to Statistics

We want to use the information in the observed data x1, . . . , xn to make
inference about the underlying distribution of X1, . . . ,Xn.

Example: You toss a coin 100 times. Assume the tosses are independent
and the coin lands heads with probability p on each toss.

In n = 100 tosses, you observe 86 heads.

What can you infer about the value of p?
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Connection to Statistics

Let X be the number of heads in the n flips. The probability mass
function of X is

fX (x | p) = P (X = x) =

(
n

x

)
px(1− p)n−x
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Connection to Statistics

fX (x | p) = P (X = x) =

(
n

x

)
px(1− p)n−x

Maximizing fX with respect to p gives us the value of p that makes our
observed data “most likely”.
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Connection to Statistics

fX (x | p) = P (X = x) =

(
n

x

)
px(1− p)n−x

Maximizing fX with respect to p gives us the value of p that makes our
observed data “most likely”. Can show that the value of p that maximizes
fX is:

p? =
x

n

So we would estimate p ≈ 86/100. This is the basis for Maximum
Likelihood Estimation.
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Further Topics

Additional Topics:

Linear Regression: y = β0 + β1x + ε

Hypothesis Testing, p-values

Confidence Intervals

Mathematical Expectation
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The End

Questions?
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