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Vector Operations

R is a vectorized language–meaning it is specially suited to processing lists
and arrays of data. Let’s create a numeric vector and do some summary
measures on this vector:
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Vector Operations

R is a vectorized language–meaning it is specially suited to processing lists
and arrays of data. Let’s create a numeric vector and do some summary
measures on this vector:

x <- c(2, -3, 0, 8)

print(x)

## [1] 2 -3 0 8

cumsum(x)

## [1] 2 -1 -1 7

diff(x)

## [1] -5 3 8
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Truncating and Rounding

Use floor(x) to return the nearest integer less than or equal to x:

x <- c(3.14159, 5, -1.223)

floor(x)

## [1] 3 5 -2

Use ceiling(x) to return the nearest integer greater than or equal to x:

ceiling(x)

## [1] 4 5 -1

Use round(x) to return the number nearest x defined by digits:

round(x, digits = 1)

## [1] 3.1 5.0 -1.2
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Sorting and Ordering

R uses a variety of functions to sort, order, and rank numeric values:

Use rev(x) to reverse the order of elements in x:

x <- c(2, -3, 0, 8)

rev(x)

## [1] 8 0 -3 2

Use sort(x) to sort a vector into ascending/descending order:

sort(x, decreasing = TRUE)

## [1] 8 2 0 -3
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Creating Strings in R

To define a string variable in R, simply pass a value encased in quotes (“
”):

farm_animals <- c("pig","cow","sheep")

print(farm_animals)

## [1] "pig" "cow" "sheep"
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Creating Strings in R

To define a string variable in R, simply pass a value encased in quotes (“
”):

farm_animals <- c("pig","cow","sheep")

print(farm_animals)

## [1] "pig" "cow" "sheep"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 10 / 68



Functions on Character Strings

The toupper() function replaces all lowercase letters with uppercase
letters:

toupper(farm_animals)

## [1] "PIG" "COW" "SHEEP"

There is also a tolower() function that has the expected effect on strings.
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Functions on Character Strings

strsplit() allows a string to be split into several components based on a
delimiter:

dates <- c("10/01/2020","11/09/2020")

strsplit(dates, "/")

## [[1]]

## [1] "10" "01" "2020"

##

## [[2]]

## [1] "11" "09" "2020"
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We can also concatenate strings using the paste() and paste0()

functions:

paste("small", farm_animals, sep = " ")

## [1] "small pig" "small cow" "small sheep"

paste0("small ", farm_animals)

## [1] "small pig" "small cow" "small sheep"

Recycling is used with string concatenation in a similar fashion to numeric
values:

paste(c("x", "y", "z"), c(1, 2), sep = "_")

## [1] "x_1" "y_2" "z_1"
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Factors in R

R has a special way of storing character strings for non-numeric vectors.

grades <- c("A", "A", "B", "C", "A", "D", "B")

print(grades)

## [1] "A" "A" "B" "C" "A" "D" "B"

g_factors <- factor(grades,

levels = c("A","B","C","D","F"))

print(g_factors)

## [1] A A B C A D B

## Levels: A B C D F
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Factors

Factors are a good way to store character data for two reasons:

1. Statistical models often need to know the levels of categorical
variables.

2. Can be more efficient in terms of storage (especially in earlier versions
of R)
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Data Frames

Data Frames are R’s way of storing tabular data: i.e., repeated
measurements for related variables.
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Data Frames

Data Frames are R’s way of storing tabular data: i.e., repeated
measurements for related variables.

Create data frames using the data.frame() function:

char <- c("R","S","T","U","V")

num <- 5:9

bool <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

frame <- data.frame(char, num, bool)

print(frame)

## char num bool

## 1 R 5 TRUE

## 2 S 6 FALSE

## 3 T 7 TRUE

## 4 U 8 TRUE

## 5 V 9 FALSE
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Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract row and column counts using nrow() and ncol()

Elements that reside in cells of a data frame can be accessed using
square-bracket indexing, similar to matrices.

Extract entire columns from a data frame using [[ · ]], $, or
[,column name]
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Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract row and column counts using nrow() and ncol()

nrow(frame)

## [1] 5

ncol(frame)

## [1] 3
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Functions on Data Frames

R has several useful functions to extract elements from data frames.

Elements that reside in cells of a data frame can be accessed using
square-bracket indexing, similar to matrices.

frame[1,1]

## [1] R

## Levels: R S T U V

frame[1,]

## char num bool

## 1 R 5 TRUE

frame[,1]

## [1] R S T U V

## Levels: R S T U V
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Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract entire columns from a data frame using [[ · ]], $, or
[,column name]

frame[[1]]

## [1] R S T U V

## Levels: R S T U V

frame$char

## [1] R S T U V

## Levels: R S T U V

frame[,"char"]

## [1] R S T U V

## Levels: R S T U V
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Exporting Data Files

R exports to a variety of different file types, including:

Flat Files (CSV, General Delimited, etc)

Excel

SPSS

STATA

print(frame)

## char num bool

## 1 R 5 TRUE

## 2 S 6 FALSE

## 3 T 7 TRUE

## 4 U 8 TRUE

## 5 V 9 FALSE
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Exporting Data Files

R supports exports to a variety of different file types, including:

Flat Files (CSV, General Delimited, etc)

write.table(frame, file = "~/Desktop/test.csv",

sep = ",", quote = F)

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 25 / 68



Exporting Data Files

R supports exports to a variety of different file types, including:

Excel

library(writexl)

## Warning: package ’writexl’ was built under R

version 3.6.2

write_xlsx(frame, "~/Desktop/test.xlsx")
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Exporting Data Files

R supports exports to a variety of different file types, including:

SPSS

library(haven)

## Warning: package ’haven’ was built under R version

3.6.2

write_sav(frame, "test.sav")
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Exporting Data Files

R supports exports to a variety of different file types, including:

STATA

library(foreign)

write.dta(frame, "~/Desktop/test.dta")
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Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

Flat Files:

read.table(file = "~/Desktop/test.csv",

header = T, sep = ",")

## char num bool

## 1 R 5 TRUE

## 2 S 6 FALSE

## 3 T 7 TRUE

## 4 U 8 TRUE

## 5 V 9 FALSE
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Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

Excel:

library(readxl)

read_xlsx(path = "~/Desktop/test.xlsx")

## # A tibble: 5 x 3

## char num bool

## <chr> <dbl> <lgl>

## 1 R 5 TRUE

## 2 S 6 FALSE

## 3 T 7 TRUE

## 4 U 8 TRUE

## 5 V 9 FALSE

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 30 / 68



Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

SPSS:

library(haven)

read_sav("test.sav")

## # A tibble: 5 x 3

## char num bool

## <dbl+lbl> <dbl> <dbl>

## 1 1 [R] 5 1

## 2 2 [S] 6 0

## 3 3 [T] 7 1

## 4 4 [U] 8 1

## 5 5 [V] 9 0
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Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

STATA:

library(foreign)

read.dta("~/Desktop/test.dta")

## char num bool

## 1 R 5 1

## 2 S 6 0

## 3 T 7 1

## 4 U 8 1

## 5 V 9 0
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Data Example

Example: evaluating wine quality based on physicochemical properties:

https://archive.ics.uci.edu/ml/datasets/wine+quality
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Data Example

Example: evaluating wine quality based on physicochemical properties [1]

wine <- read.table("wine.csv", sep = ",", header = T)

head(wine)

## fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality

## 1 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5

## 2 7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5

## 3 7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5

## 4 11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6

## 5 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5

## 6 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5

What happened here?
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Data Example

Example: evaluating wine quality based on physicochemical properties

wine <- read.table("wine.csv", sep = ";", header = T)

wine <- wine[, c("quality",

"fixed.acidity",

"volatile.acidity")]

summary(wine)

## quality fixed.acidity volatile.acidity

## Min. :3.000 Min. : 4.60 Min. :0.1200

## 1st Qu.:5.000 1st Qu.: 7.10 1st Qu.:0.3900

## Median :6.000 Median : 7.90 Median :0.5200

## Mean :5.636 Mean : 8.32 Mean :0.5278

## 3rd Qu.:6.000 3rd Qu.: 9.20 3rd Qu.:0.6400

## Max. :8.000 Max. :15.90 Max. :1.5800
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Data Example

Column names for the wine data frame:
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Data Example

We can use the unique() to view the various values for quality:

unique(wine$quality)

## [1] 5 6 7 4 8 3
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Data Example

We can reorder the rows in the wine data frame by using the order()

function:

wineOrdered <- wine[order(wine$quality, decreasing = T), ]

head(wineOrdered)

## quality fixed.acidity volatile.acidity

## 268 8 7.9 0.35

## 279 8 10.3 0.32

## 391 8 5.6 0.85

## 441 8 12.6 0.31

## 456 8 11.3 0.62

## 482 8 9.4 0.30
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Data Example

Add new columns to the data frame directly, using the $ operator:

wine$average_acidity <- (1 / 2) *

(wine$fixed.acidity + wine$volatile.acidity)

head(wine$average_acidity)

## [1] 4.05 4.34 4.28 5.74 4.05 4.03
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Data Example

Extract only rows where quality = 8:

wineHighQuality <- wine[wine$quality == 8, ]

head(wineHighQuality)

## quality fixed.acidity volatile.acidity average_acidity

## 268 8 7.9 0.35 4.125

## 279 8 10.3 0.32 5.310

## 391 8 5.6 0.85 3.225

## 441 8 12.6 0.31 6.455

## 456 8 11.3 0.62 5.960

## 482 8 9.4 0.30 4.850

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 41 / 68



Data Example

Extract only rows where quality = 8 and fixed.acidity > 10:

wineHighQuality2 <- wine[(wine$quality == 8 &

wine$fixed.acidity > 10), ]

head(wineHighQuality2)

## quality fixed.acidity volatile.acidity average_acidity

## 279 8 10.3 0.32 5.310

## 441 8 12.6 0.31 6.455

## 456 8 11.3 0.62 5.960

## 496 8 10.7 0.35 5.525

## 499 8 10.7 0.35 5.525
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Data Example

Extract only rows where quality = 8 or fixed.acidity > 10:

wineHighQuality3 <- wine[(wine$quality == 8 |

wine$fixed.acidity > 10), ]

head(wineHighQuality3)

## quality fixed.acidity volatile.acidity average_acidity

## 4 6 11.2 0.28 5.740

## 57 5 10.2 0.42 5.310

## 114 6 10.1 0.31 5.205

## 198 6 11.5 0.30 5.900

## 206 7 12.8 0.30 6.550

## 207 7 12.8 0.30 6.550
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Data Example

Extract only rows where quality is equal to 3, 4, or 5:

wineLowerQuality <- wine[(wine$quality %in% c(3, 4, 5)), ]

head(wineLowerQuality)

## quality fixed.acidity volatile.acidity average_acidity

## 1 5 7.4 0.70 4.05

## 2 5 7.8 0.88 4.34

## 3 5 7.8 0.76 4.28

## 5 5 7.4 0.70 4.05

## 6 5 7.4 0.66 4.03

## 7 5 7.9 0.60 4.25
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Lists in R

Lists are general objects that are used for data storage and manipulation in
R.
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Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects
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Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects

Each element of a list can be a scalar, a vector, a function, or even
another list!
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Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects

Each element of a list can be a scalar, a vector, a function, or even
another list!

Data Frames can be viewed as a special kind of list in R in which
each element of the list is a column in the frame.
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Creating a List in R

Lists are created from scratch using the list() function:

l <- list(numbers = c(1, 2, 3), letters = c("a", "b", "c"))

print(l)

## $numbers

## [1] 1 2 3

##

## $letters

## [1] "a" "b" "c"
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Creating a List in R

Named elements of a list can be accessed exactly as columns in a data
frame:

l$numbers

## [1] 1 2 3

l$letters

## [1] "a" "b" "c"
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Creating a List in R

Named elements of a list can also be accessed using double square
brackets:

l[[1]]

## [1] 1 2 3

l[[2]]

## [1] "a" "b" "c"
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Lists and Data Frames

Note the relationship between lists and data frames:

class(l)

## [1] "list"

class(l) <- "data.frame"

attr(l, "row.names") <- 1:3

print(l)

## numbers letters

## 1 1 a

## 2 2 b

## 3 3 c
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The apply() Family

You may be familiar with the apply() function for matrices in R:

m <- matrix(1:9, nrow = 3)

print(m)

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

apply(m, 2, sum) # column sums for m

## [1] 6 15 24

apply(m, 1, mean) # row means for m

## [1] 4 5 6
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The apply() Family

R has a more generic function called lapply(X, FUN, ...) which
applies the function FUN to each element of the list X.
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The apply() Family

R has a more generic function called lapply(X, FUN, ...) which
applies the function FUN to each element of the list X. Example: calculate
e, e2, and e3:

lapply(1:3, exp)

## [[1]]

## [1] 2.718282

##

## [[2]]

## [1] 7.389056

##

## [[3]]

## [1] 20.08554
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The apply() Family

lapply() also has more surprising uses. For instance, suppose we want to
calculate a bootstrap confidence interval for the mean fixed acidity from
our population.
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The apply() Family

lapply() also has more surprising uses. For instance, suppose we want to
write a function to calculate a bootstrap confidence interval for the mean
fixed acidity from our population.

This would require:

1. Select M bootstrap samples–random subsamples of size n from our
wine data, taken with replacement.

2. For the ith bootstrap sample, calculate a sample mean fixed acidity:
X̄ ∗
i

3. {X̄ ∗
1 , . . . , X̄

∗
M} constitutes a bootstrap sample that can be used to

formulate a confidence interval for the true mean fixed acidity.

Can this be done without using a loop?
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The apply() Family

boot <- function(...) {
n <- length(..2)

y <- sample(..2, size = n, replace = T)

return(mean(y))

}
draw <- function(m) {

samples <- lapply(1:m, boot,

wine$fixed.acidity)

class(samples) <- "numeric"

return(samples)

}
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The apply() Family

set.seed(123)

lo <- draw(5)

md <- draw(50)

hi <- draw(5000)
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The apply() Family

hist(lo)

Histogram of lo
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The apply() Family

hist(md)

Histogram of md
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The apply() Family

hist(hi)

Histogram of hi
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The apply() Family

lower <- 2 * mean(wine$fixed.acidity) -

quantile(hi, 0.975)

upper <- 2 * mean(wine$fixed.acidity) -

quantile(hi, 0.025)

names(lower) <- names(upper) <- NULL

print(c(lo=lower, hi=upper))

## lo hi

## 8.233016 8.404819
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Questions

The End.
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