
Data Manipulation in R

Matt Arthur

UCR GradQuant

9 Nov 2021

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 1 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 2 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 3 / 68

Vector Operations

R is a vectorized language–meaning it is specially suited to processing lists
and arrays of data. Let’s create a numeric vector and do some summary
measures on this vector:

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 4 / 68

Vector Operations

R is a vectorized language–meaning it is specially suited to processing lists
and arrays of data. Let’s create a numeric vector and do some summary
measures on this vector:

x <- c(2, -3, 0, 8)

print(x)

[1] 2 -3 0 8

cumsum(x)

[1] 2 -1 -1 7

diff(x)

[1] -5 3 8

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 5 / 68

Truncating and Rounding

Use floor(x) to return the nearest integer less than or equal to x:

x <- c(3.14159, 5, -1.223)

floor(x)

[1] 3 5 -2

Use ceiling(x) to return the nearest integer greater than or equal to x:

ceiling(x)

[1] 4 5 -1

Use round(x) to return the number nearest x defined by digits:

round(x, digits = 1)

[1] 3.1 5.0 -1.2

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 6 / 68

Sorting and Ordering

R uses a variety of functions to sort, order, and rank numeric values:

Use rev(x) to reverse the order of elements in x:

x <- c(2, -3, 0, 8)

rev(x)

[1] 8 0 -3 2

Use sort(x) to sort a vector into ascending/descending order:

sort(x, decreasing = TRUE)

[1] 8 2 0 -3

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 7 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 8 / 68

Creating Strings in R

To define a string variable in R, simply pass a value encased in quotes (“
”):

farm_animals <- c("pig","cow","sheep")

print(farm_animals)

[1] "pig" "cow" "sheep"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 9 / 68

Creating Strings in R

To define a string variable in R, simply pass a value encased in quotes (“
”):

farm_animals <- c("pig","cow","sheep")

print(farm_animals)

[1] "pig" "cow" "sheep"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 10 / 68

Functions on Character Strings

The toupper() function replaces all lowercase letters with uppercase
letters:

toupper(farm_animals)

[1] "PIG" "COW" "SHEEP"

There is also a tolower() function that has the expected effect on strings.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 11 / 68

Functions on Character Strings

strsplit() allows a string to be split into several components based on a
delimiter:

dates <- c("10/01/2020","11/09/2020")

strsplit(dates, "/")

[[1]]

[1] "10" "01" "2020"

##

[[2]]

[1] "11" "09" "2020"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 12 / 68

We can also concatenate strings using the paste() and paste0()

functions:

paste("small", farm_animals, sep = " ")

[1] "small pig" "small cow" "small sheep"

paste0("small ", farm_animals)

[1] "small pig" "small cow" "small sheep"

Recycling is used with string concatenation in a similar fashion to numeric
values:

paste(c("x", "y", "z"), c(1, 2), sep = "_")

[1] "x_1" "y_2" "z_1"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 13 / 68

Factors in R

R has a special way of storing character strings for non-numeric vectors.

grades <- c("A", "A", "B", "C", "A", "D", "B")

print(grades)

[1] "A" "A" "B" "C" "A" "D" "B"

g_factors <- factor(grades,

levels = c("A","B","C","D","F"))

print(g_factors)

[1] A A B C A D B

Levels: A B C D F

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 14 / 68

Factors

Factors are a good way to store character data for two reasons:

1. Statistical models often need to know the levels of categorical
variables.

2. Can be more efficient in terms of storage (especially in earlier versions
of R)

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 15 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 16 / 68

Data Frames

Data Frames are R’s way of storing tabular data: i.e., repeated
measurements for related variables.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 17 / 68

Data Frames

Data Frames are R’s way of storing tabular data: i.e., repeated
measurements for related variables.

Create data frames using the data.frame() function:

char <- c("R","S","T","U","V")

num <- 5:9

bool <- c(TRUE, FALSE, TRUE, TRUE, FALSE)

frame <- data.frame(char, num, bool)

print(frame)

char num bool

1 R 5 TRUE

2 S 6 FALSE

3 T 7 TRUE

4 U 8 TRUE

5 V 9 FALSE

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 18 / 68

Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract row and column counts using nrow() and ncol()

Elements that reside in cells of a data frame can be accessed using
square-bracket indexing, similar to matrices.

Extract entire columns from a data frame using [[·]], $, or
[,column name]

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 19 / 68

Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract row and column counts using nrow() and ncol()

nrow(frame)

[1] 5

ncol(frame)

[1] 3

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 20 / 68

Functions on Data Frames

R has several useful functions to extract elements from data frames.

Elements that reside in cells of a data frame can be accessed using
square-bracket indexing, similar to matrices.

frame[1,1]

[1] R

Levels: R S T U V

frame[1,]

char num bool

1 R 5 TRUE

frame[,1]

[1] R S T U V

Levels: R S T U V

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 21 / 68

Functions on Data Frames

R has several useful functions to extract elements from data frames.

Extract entire columns from a data frame using [[·]], $, or
[,column name]

frame[[1]]

[1] R S T U V

Levels: R S T U V

frame$char

[1] R S T U V

Levels: R S T U V

frame[,"char"]

[1] R S T U V

Levels: R S T U V

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 22 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 23 / 68

Exporting Data Files

R exports to a variety of different file types, including:

Flat Files (CSV, General Delimited, etc)

Excel

SPSS

STATA

print(frame)

char num bool

1 R 5 TRUE

2 S 6 FALSE

3 T 7 TRUE

4 U 8 TRUE

5 V 9 FALSE

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 24 / 68

Exporting Data Files

R supports exports to a variety of different file types, including:

Flat Files (CSV, General Delimited, etc)

write.table(frame, file = "~/Desktop/test.csv",

sep = ",", quote = F)

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 25 / 68

Exporting Data Files

R supports exports to a variety of different file types, including:

Excel

library(writexl)

Warning: package ’writexl’ was built under R

version 3.6.2

write_xlsx(frame, "~/Desktop/test.xlsx")

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 26 / 68

Exporting Data Files

R supports exports to a variety of different file types, including:

SPSS

library(haven)

Warning: package ’haven’ was built under R version

3.6.2

write_sav(frame, "test.sav")

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 27 / 68

Exporting Data Files

R supports exports to a variety of different file types, including:

STATA

library(foreign)

write.dta(frame, "~/Desktop/test.dta")

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 28 / 68

Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

Flat Files:

read.table(file = "~/Desktop/test.csv",

header = T, sep = ",")

char num bool

1 R 5 TRUE

2 S 6 FALSE

3 T 7 TRUE

4 U 8 TRUE

5 V 9 FALSE

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 29 / 68

Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

Excel:

library(readxl)

read_xlsx(path = "~/Desktop/test.xlsx")

A tibble: 5 x 3

char num bool

<chr> <dbl> <lgl>

1 R 5 TRUE

2 S 6 FALSE

3 T 7 TRUE

4 U 8 TRUE

5 V 9 FALSE

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 30 / 68

Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

SPSS:

library(haven)

read_sav("test.sav")

A tibble: 5 x 3

char num bool

<dbl+lbl> <dbl> <dbl>

1 1 [R] 5 1

2 2 [S] 6 0

3 3 [T] 7 1

4 4 [U] 8 1

5 5 [V] 9 0

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 31 / 68

Reading from Data Files

All the write-functions we have seen have corresponding read-functions to
load data into an R session:

STATA:

library(foreign)

read.dta("~/Desktop/test.dta")

char num bool

1 R 5 1

2 S 6 0

3 T 7 1

4 U 8 1

5 V 9 0

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 32 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 33 / 68

Data Example

Example: evaluating wine quality based on physicochemical properties:

https://archive.ics.uci.edu/ml/datasets/wine+quality

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 34 / 68

https://archive.ics.uci.edu/ml/datasets/wine+quality

Data Example

Example: evaluating wine quality based on physicochemical properties [1]

wine <- read.table("wine.csv", sep = ",", header = T)

head(wine)

fixed.acidity.volatile.acidity.citric.acid.residual.sugar.chlorides.free.sulfur.dioxide.total.sulfur.dioxide.density.pH.sulphates.alcohol.quality

1 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5

2 7.8;0.88;0;2.6;0.098;25;67;0.9968;3.2;0.68;9.8;5

3 7.8;0.76;0.04;2.3;0.092;15;54;0.997;3.26;0.65;9.8;5

4 11.2;0.28;0.56;1.9;0.075;17;60;0.998;3.16;0.58;9.8;6

5 7.4;0.7;0;1.9;0.076;11;34;0.9978;3.51;0.56;9.4;5

6 7.4;0.66;0;1.8;0.075;13;40;0.9978;3.51;0.56;9.4;5

What happened here?

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 35 / 68

Data Example

Example: evaluating wine quality based on physicochemical properties

wine <- read.table("wine.csv", sep = ";", header = T)

wine <- wine[, c("quality",

"fixed.acidity",

"volatile.acidity")]

summary(wine)

quality fixed.acidity volatile.acidity

Min. :3.000 Min. : 4.60 Min. :0.1200

1st Qu.:5.000 1st Qu.: 7.10 1st Qu.:0.3900

Median :6.000 Median : 7.90 Median :0.5200

Mean :5.636 Mean : 8.32 Mean :0.5278

3rd Qu.:6.000 3rd Qu.: 9.20 3rd Qu.:0.6400

Max. :8.000 Max. :15.90 Max. :1.5800

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 36 / 68

Data Example

Column names for the wine data frame:

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 37 / 68

Data Example

We can use the unique() to view the various values for quality:

unique(wine$quality)

[1] 5 6 7 4 8 3

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 38 / 68

Data Example

We can reorder the rows in the wine data frame by using the order()

function:

wineOrdered <- wine[order(wine$quality, decreasing = T),]

head(wineOrdered)

quality fixed.acidity volatile.acidity

268 8 7.9 0.35

279 8 10.3 0.32

391 8 5.6 0.85

441 8 12.6 0.31

456 8 11.3 0.62

482 8 9.4 0.30

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 39 / 68

Data Example

Add new columns to the data frame directly, using the $ operator:

wine$average_acidity <- (1 / 2) *

(wine$fixed.acidity + wine$volatile.acidity)

head(wine$average_acidity)

[1] 4.05 4.34 4.28 5.74 4.05 4.03

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 40 / 68

Data Example

Extract only rows where quality = 8:

wineHighQuality <- wine[wine$quality == 8,]

head(wineHighQuality)

quality fixed.acidity volatile.acidity average_acidity

268 8 7.9 0.35 4.125

279 8 10.3 0.32 5.310

391 8 5.6 0.85 3.225

441 8 12.6 0.31 6.455

456 8 11.3 0.62 5.960

482 8 9.4 0.30 4.850

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 41 / 68

Data Example

Extract only rows where quality = 8 and fixed.acidity > 10:

wineHighQuality2 <- wine[(wine$quality == 8 &

wine$fixed.acidity > 10),]

head(wineHighQuality2)

quality fixed.acidity volatile.acidity average_acidity

279 8 10.3 0.32 5.310

441 8 12.6 0.31 6.455

456 8 11.3 0.62 5.960

496 8 10.7 0.35 5.525

499 8 10.7 0.35 5.525

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 42 / 68

Data Example

Extract only rows where quality = 8 or fixed.acidity > 10:

wineHighQuality3 <- wine[(wine$quality == 8 |

wine$fixed.acidity > 10),]

head(wineHighQuality3)

quality fixed.acidity volatile.acidity average_acidity

4 6 11.2 0.28 5.740

57 5 10.2 0.42 5.310

114 6 10.1 0.31 5.205

198 6 11.5 0.30 5.900

206 7 12.8 0.30 6.550

207 7 12.8 0.30 6.550

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 43 / 68

Data Example

Extract only rows where quality is equal to 3, 4, or 5:

wineLowerQuality <- wine[(wine$quality %in% c(3, 4, 5)),]

head(wineLowerQuality)

quality fixed.acidity volatile.acidity average_acidity

1 5 7.4 0.70 4.05

2 5 7.8 0.88 4.34

3 5 7.8 0.76 4.28

5 5 7.4 0.70 4.05

6 5 7.4 0.66 4.03

7 5 7.9 0.60 4.25

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 44 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 45 / 68

Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 46 / 68

Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 47 / 68

Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects

Each element of a list can be a scalar, a vector, a function, or even
another list!

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 48 / 68

Lists in R

Lists are general objects that are used for data storage and manipulation in
R.

Lists are stored internally as Generic Vectors; i.e., vectors of generic
objects

Each element of a list can be a scalar, a vector, a function, or even
another list!

Data Frames can be viewed as a special kind of list in R in which
each element of the list is a column in the frame.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 49 / 68

Creating a List in R

Lists are created from scratch using the list() function:

l <- list(numbers = c(1, 2, 3), letters = c("a", "b", "c"))

print(l)

$numbers

[1] 1 2 3

##

$letters

[1] "a" "b" "c"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 50 / 68

Creating a List in R

Named elements of a list can be accessed exactly as columns in a data
frame:

l$numbers

[1] 1 2 3

l$letters

[1] "a" "b" "c"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 51 / 68

Creating a List in R

Named elements of a list can also be accessed using double square
brackets:

l[[1]]

[1] 1 2 3

l[[2]]

[1] "a" "b" "c"

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 52 / 68

Lists and Data Frames

Note the relationship between lists and data frames:

class(l)

[1] "list"

class(l) <- "data.frame"

attr(l, "row.names") <- 1:3

print(l)

numbers letters

1 1 a

2 2 b

3 3 c

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 53 / 68

The apply() Family

You may be familiar with the apply() function for matrices in R:

m <- matrix(1:9, nrow = 3)

print(m)

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

apply(m, 2, sum) # column sums for m

[1] 6 15 24

apply(m, 1, mean) # row means for m

[1] 4 5 6

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 54 / 68

The apply() Family

R has a more generic function called lapply(X, FUN, ...) which
applies the function FUN to each element of the list X.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 55 / 68

The apply() Family

R has a more generic function called lapply(X, FUN, ...) which
applies the function FUN to each element of the list X. Example: calculate
e, e2, and e3:

lapply(1:3, exp)

[[1]]

[1] 2.718282

##

[[2]]

[1] 7.389056

##

[[3]]

[1] 20.08554

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 56 / 68

The apply() Family

lapply() also has more surprising uses. For instance, suppose we want to
calculate a bootstrap confidence interval for the mean fixed acidity from
our population.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 57 / 68

The apply() Family

lapply() also has more surprising uses. For instance, suppose we want to
write a function to calculate a bootstrap confidence interval for the mean
fixed acidity from our population.

This would require:

1. Select M bootstrap samples–random subsamples of size n from our
wine data, taken with replacement.

2. For the ith bootstrap sample, calculate a sample mean fixed acidity:
X̄ ∗
i

3. {X̄ ∗
1 , . . . , X̄

∗
M} constitutes a bootstrap sample that can be used to

formulate a confidence interval for the true mean fixed acidity.

Can this be done without using a loop?

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 58 / 68

The apply() Family

boot <- function(...) {
n <- length(..2)

y <- sample(..2, size = n, replace = T)

return(mean(y))

}
draw <- function(m) {

samples <- lapply(1:m, boot,

wine$fixed.acidity)

class(samples) <- "numeric"

return(samples)

}

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 59 / 68

The apply() Family

set.seed(123)

lo <- draw(5)

md <- draw(50)

hi <- draw(5000)

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 60 / 68

The apply() Family

hist(lo)

Histogram of lo

lo

F
re

qu
en

cy

8.28 8.30 8.32 8.34 8.36 8.38 8.40

0.
0

0.
5

1.
0

1.
5

2.
0

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 61 / 68

The apply() Family

hist(md)

Histogram of md

md

F
re

qu
en

cy

8.25 8.30 8.35 8.40

0
2

4
6

8
10

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 62 / 68

The apply() Family

hist(hi)

Histogram of hi

hi

F
re

qu
en

cy

8.15 8.20 8.25 8.30 8.35 8.40 8.45

0
20

0
40

0
60

0
80

0

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 63 / 68

The apply() Family

lower <- 2 * mean(wine$fixed.acidity) -

quantile(hi, 0.975)

upper <- 2 * mean(wine$fixed.acidity) -

quantile(hi, 0.025)

names(lower) <- names(upper) <- NULL

print(c(lo=lower, hi=upper))

lo hi

8.233016 8.404819

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 64 / 68

Overview

1 Vectors in R

2 Strings in R
Creating Strings
Factors

3 Data Frames

4 File IO in R

5 Example

6 Lists

7 Conclusion

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 65 / 68

Credits

P. Cortez, A. Cerdeira, F.Almeida, T. Matos, and J. Reis.
Modeling wine preferences by data mining from physicochemical
properties.
In Decision Support Systems, Elsevier, 47(4):547–553, 2009.
https://archive.ics.uci.edu/ml/datasets/wine+quality.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 66 / 68

Credits

This workshop was based in part on a similar workshop delivered by
Ruihan Liu during Winter 2020.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 67 / 68

Questions

The End.

Matt Arthur (UCR GradQuant) Data Manipulation in R 9 Nov 2021 68 / 68

	Vectors in R
	Strings in R
	Creating Strings
	Factors

	Data Frames
	File IO in R
	Example
	Lists
	Conclusion

