Analysis of Variance (ANOVA)

Matt Arthur

UCR GradQuant

18 Jan 2022

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ 18 Jan 2022 1/88

(日) (四) (日) (日) (日)

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures
- Two-Way ANOVA
- 5 Post Hoc Comparisons

6 Random Effects

< ∃ ►

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures
- 4 Two-Way ANOVA
- 5 Post Hoc Comparisons
- 6 Random Effects

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is ANOVA?

 Analysis of Variance (ANOVA) is a collection of statistical models and their associated estimation procedures used to analyze differences among group means.

< □ > < □ > < □ > < □ > < □ > < □ >

What is ANOVA?

- Analysis of Variance (ANOVA) is a collection of statistical models and their associated estimated procedures used to analyze differences among group means.
- It's not called *Analysis of Means* because we make inferences about means by analyzing variance.

What is ANOVA?

- Analysis of Variance (ANOVA) is a collection of statistical models and their associated estimated procedures used to analyze differences among group means.
- It's not called *Analysis of Means* because we make inferences about means by analyzing variance.
- Assumptions:
 - Data must be Normally Distributed
 - Data must be Independent
 - Data must have Equal Population Variances

ANOVA Types:

- Various types of ANOVA reflect different experimental designs and situations for which they have been developed.
- *n*-way ANOVA refers to *n Independent Variables* used in ANOVA tests.

- A IB (A IB)

Examples in which ANOVA could be applied:

- A group of patients is trying three different treatments. You want to see if one if better than the others.
- A manufacturer has two different processes to make light bulbs. They want to know if one process is better than the other
- Students from different colleges take the same exam. You want to see if one college outperforms the other.

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures
- 4 Two-Way ANOVA
- 5 Post Hoc Comparisons
- 6 Random Effects

→ Ξ →

One-Way ANOVA

One-Way ANOVA refers to the situation in which we want to compare k means corresponding to different levels of a single independent variable.

General Setup:

$$\begin{aligned} x_{11}, x_{12}, \dots, x_{1n_1} &\sim \mathsf{N}\left(\mu_1, \sigma^2\right) \\ x_{21}, x_{22}, \dots, x_{2n_2} &\sim \mathsf{N}\left(\mu_2, \sigma^2\right) \\ &\vdots \\ x_{k1}, x_{k2}, \dots, x_{kn_k} &\sim \mathsf{N}\left(\mu_k, \sigma^2\right) \end{aligned}$$

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

18 Jan 2022 10 / 88

< □ > < □ > < □ > < □ > < □ > < □ >

From the previous slide, our assumption is:

$$X_{ij} \sim N\left(\mu_i, \sigma^2\right)$$

For i = 1, ..., k, $j = 1, ..., n_i$

(日) (四) (日) (日) (日)

Visual Interpretation

We want to use results from our sample to test the following hypothesis:

- $H_0: \mu_1 = \mu_2 = \cdots = \mu_k$
- H_1 : at least one μ_i differs from the others, for $i = 1, \ldots, k$
- If H_0 is rejected, we cannot conclude that all population means are the same.
- Rejecting the null hypothesis means that at least two of the group population means are different from one another.
- If we fail to reject H_0 , it is reasonable to assume that all population means are the same.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Visual Interpretation

Sample distribution of \bar{X} given H_0 is true:

Visual Interpretation

Sample distribution of \bar{X} given H_0 is false (at least two means differ)

< ロト < 同ト < ヨト < ヨ

From the previous slide, our assumption is:

$$X_{ij} \sim \mathsf{N}\left(\mu_i, \sigma^2\right)$$

For
$$i = 1, ..., k$$
, $j = 1, ..., n_i$

Let $n = n_1 + n_2 + \cdots + n_k$

(日) (四) (日) (日) (日)

Let \bar{X}_{i} . denote the *within-group* mean for group *i*:

$$ar{X}_{i\cdot} = rac{1}{n_i}\sum_{j=1}^{n_i}X_{ij}$$

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

≣▶▲≣▶ ≣ ∽QC 18 Jan 2022 16/88

(日) (四) (日) (日) (日)

Let \bar{X}_{i} denote the *within-group* mean for group *i*:

$$\bar{X}_{i\cdot} = \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij}$$

Let $\bar{X}_{...}$ denote the grand mean:

$$\bar{X}_{\cdots} = \frac{1}{n} \sum_{i=1}^{k} \sum_{j=1}^{n_i} X_{ij}$$

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

18 Jan 2022 17 / 88

- **→** ∃ →

The idea with ANOVA is to compare the variability between groups and within groups. To measure between-group variability, we use a between-group sum of squares, SSTR:

$$SSTR = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{X}_{i.} - \bar{X}_{..})^2$$

To measure the within-group variability, we use an error sum of squares:

$$SSE = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i\cdot})^2$$

Matt Arthur (UCR GradQuant)

< □ > < □ > < □ > < □ > < □ > < □ >

To measure between-group variability, we use a between-group sum of squares:

$$SSTR = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (\bar{X}_{i.} - \bar{X}_{..})^2 = \sum_{i=1}^{k} n_i (\bar{X}_{i.} - \bar{X}_{..})^2$$

To measure the within-group variability, we use an error sum of squares:

SSE =
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (X_{ij} - \bar{X}_{i.})^2 = \sum_{i=1}^{k} (n_i - 1) S_i^2$$

To measure the total variability of the observed data, use a total sum of squares:

$$\mathsf{SST} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(X_{ij} - \bar{X}_{\cdot \cdot} \right)^2$$

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

18 Jan 2022 19 / 88

< □ > < □ > < □ > < □ > < □ > < □ >

One-Way ANOVA Equations

 S_i^2 is the sample variance within group *i*:

$$S_i^2 = rac{1}{n_i - 1} \sum_{j=1}^{n_i} \left(X_{ij} - ar{X}_{i\cdot}
ight)^2$$

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

≧▶▲≧▶ ≧ ∽QC 18 Jan 2022 20/88

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-Way ANOVA Equations

SSTR and SSE both capture the variability in the observations about their sample means. Both can be used to estimate σ^2 :

- Define MSE = SSE/(n k)
- Define MSTR = SSTR/(k-1)

< □ > < □ > < □ > < □ > < □ > < □ >

One-Way ANOVA Equations

SSTR and SSE both capture the variability in the observations about their sample means. Both can be used to estimate σ^2 :

- Define MSE = SSE/(n k)
- Define MSTR = SSTR/(k-1)

< □ > < □ > < □ > < □ > < □ > < □ >

Equations

- $\bullet~{\rm MSTR}$ only estimates σ^2 if the population means are equal
- If the population means are not equal, MSTR estimates a quantity larger than σ^2
- If the null hypothesis is true and the ANOVA assumptions are valid, the sampling distribution of

$$F = \frac{MSTR}{MSE}$$

follows an F-distribution with degrees of freedom k-1 and n-k

Equations

- If the meas of the k populations are not equal, the value of F will be inflated because MSTR overestimates σ^2 .
- Thus, we will reject the null hypothesis if the resulting value of MSTR/MSE appears too large to have been selected at random from the appropriate *F*-distribution.

One-Way ANOVA

Equations

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

■ ・ 4 ■ ト ■ つへの 18 Jan 2022 25 / 88

(日) (四) (日) (日) (日)

A pharmaceutical company conducts an experiment to test the effect of a new cholesterol medication. The company selection 15 subjects randomly from a larger population. Each subject is randomly assigned to one of three treatment groups. Within each treatment group, subjects receive a different dose of the new medication.

- In Group 1, subjects receive 0mg/day
- In Group 2, subjects receive 50mg/day
- In Group 3, subjects receive 100mg/day

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- In Group 1, subjects receive 0mg/day
- In Group 2, subjects receive 50mg/day
- In Group 3, subjects receive 100mg/day

After 30 days, doctors measure the cholesterol level of each subject. The results for all 15 subjects appear in the following table.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Group 1 (0mg)	Group 2 (50mg)	Group 3 (100mg)		
210	210	180		
240	240	210		
270	240	210		
270	270	210		
300	270	240		

Interest: Does dosage level have a significant effect on cholesterol level?

A D N A B N A B N A B N

First, calculate the sample mean, grand mean, and sample variance for each group.

• Sample Means:

	Group 1 (0mg)	Group 2 (50gm)	Group 3 (100mg)
Mean	258	246	210

• Sample Variances:

	Group 1 (0mg)	Group 2 (50mg)	Group 3 (100mg)
Variance	1170	630	450

• Grand Mean: (258 + 256 + 210)/3 = 238

→ ∃ →

Then, calculate the within- and between-group estimate of variance:

$$MSE = \frac{(5-1)*1170 + (5-1)*630 + (5-1)*450}{15-3} = \frac{9000}{12} = 750$$
$$MSTR = \frac{5*(258-238)^2 + 5*(246-238)^2 + 5*(210-238)^2}{3-1} = 3120$$

The observed F-value is:

$$F = \frac{\text{MSTR}}{\text{MSE}} = \frac{3120}{750} = 4.16$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Under the null hypothesis, the observed F
- Using an F-table, the critical value for an F-distribution with degrees of freedom 2 and 12 is 3.8853 (significance level = 0.05)
- Since F = 4.16 > 3.8853, we reject the null hypothesis and conclude that the mean cholesterol levels are **not** the same among the three treatments.

(4) (日本)

Source of	Sum of	Degrees of	Mean	F
Variation	Squares	Freedom	Squares	
Treatment	SSTR	k-1	MSTR	MSTR/MSE
Error	SSE	n – k	MSE	
Total	SST	n-1		

<ロト <問ト < 目と < 目と

The total sum of squares (SST) measures the total vartiability in the response variance, without considering the group structure:

$$\mathsf{SST} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \left(X_{ij} - \bar{X}_{\cdot \cdot} \right)^2$$

ANOVA can be viewed as the process of partitioning the total sum of squares into their corresponding components: Treatments and Error

< ロ > < 同 > < 回 > < 回 > < 回 > <

$$(X_{ij} - \bar{X}_{..}) = (X_{ij} - \bar{X}_{i.}) + (X_{i.} - \bar{X}_{..})$$

This relationship also holds if we square and sum all terms:

$$\underbrace{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (X_{ij} - \bar{X}_{..})^{2}}_{\text{SST}} = \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (X_{ij} - \bar{X}_{i.})^{2}}_{\text{SSE}} + \underbrace{\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (X_{i.} - \bar{X}_{..})^{2}}_{\text{SSTR}}$$

(日) (四) (日) (日) (日)

R can also perform one-way ANOVA:

```
doseC <- c(210,240,270,270,300,210,240,240,270,270,180,210,
           210.210.240)
doseG <- c(rep("group1", 5), rep("group2", 5), rep("group3", 5))
dose <- data.frame(dose=as.numeric(doseC),</pre>
                   group=factor(doseG))
head(dose)
##
     dose group
## 1 210 group1
## 2 240 group1
## 3 270 group1
## 4 270 group1
## 5 300 group1
```

```
## 6 210 group2
```

<pre>summary(aov(dose\$dose ~ dose\$group))</pre>										
##		Df	Sum Sq N	lean Sq	F value	Pr(>F)				
##	dose\$group	2	6240	3120	4.16	0.0424	*			
##	Residuals	12	9000	750						
##										
##	Signif. code	es:	0 '***'	0.001	'**' 0.0	01 '*' (0.05	1.1	0.1	ľ
Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures

Two-Way ANOVA

5 Post Hoc Comparisons

6 Random Effects

→ ∃ →

ANOVA Assumptions

To conduct ANOVA tests, we need to check model assumptions. The ANOVA model is

$$X_{ij} = \mu_i + \epsilon_{ij}, \quad \epsilon_{ij} \sim \mathsf{N}\left(0, \sigma^2\right)$$

where ϵ_{ij} are independent. Thus, we have three assumptions to make:

- 1. Normality
- 2. Equal, Constant Variance
- 3. Independence

We can check these assumptions using our residuals

.

ANOVA Assumptions

Residuals are calculated as

$$\hat{\epsilon}_{ij} = X_{ij} - \hat{\mu}_i = X_{ij} - \bar{X}_i.$$

In our Example:

Group 1 (residuals)	Group 2 (residuals)	Group 3 (residuals)
210 (210 - 258 = -48)	210 (210 - 246 = -36)	180 (180 - 210 = -30)
240 (240 - 258 = -18)	240 (240 - 246 = -6)	210 (210 - 210 = 0)
270(270 - 258 = 12)	240 (240 - 246 = -6)	210 (210 - 210 = 0)
270(270 - 258 = 12)	270(270 - 246 = 24)	210 (210 - 210 = 0)
300 (300 - 258 = 42)	270 (270 - 246 = 24)	240 (240 - 210 = 30)

< □ > < 同 > < 回 > < 回 > < 回 >

Normality Assumption

To check the normality assumption, we can use a Q-Q Plot:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

plot(m, which = 2)

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

18 Jan 2022 41 / 88

æ

イロト イヨト イヨト イヨト

Points in the Q-Q Plot should form an approximate 45-degree line:

• Indicating that the theoretical quantiles from a normal distribution match the estimated quantiles from the data.

< □ > < □ > < □ > < □ > < □ > < □ >

We an also test for normality using the Shapiro-Wilk Normality Test:

```
shapiro.test(residuals)
##
## Shapiro-Wilk normality test
##
## data: residuals
## W = 0.96461, p-value = 0.7976
```

In this case, the null hypothesis is:

 H_0 : Data are drawn from a Normal Distribution

イロト 不得 トイヨト イヨト 二日

According to both the Q-Q Plot and the Shapiro-Wilk test, we can conclude that our data are normality distributed

Constant Variance of Errors

There are also a few ways to check for homogeneity of variances. The easiest way is to use a residual plot.

If the variances are equal, the residuals should be distributed nearly equally above and below zero.

Constant Variance

plot(m, which = 1)

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

18 Jan 2022 46 / 88

æ

イロト イヨト イヨト イヨト

Constant Variance

Another way to test for homogeneity of variance is to use Bartlett's Test, which tests the hypothesis:

 H_0 : All Variances are Equal

```
bartlett.test(x = dose[,1], g = dose[,2])
##
## Bartlett test of homogeneity of variances
##
## data: dose[, 1] and dose[, 2]
## Bartlett's K-squared = 0.86578, df = 2, p-value = 0.6486
```

Constant Variance

Since the p-value is large, we fail to reject H_0 and conclude that all variances are equal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Remedial Measures

If the assumptions about normality, constant variance, and independence are not satisfied, our ANOVA results may be unreliable.

• To remedy these issues, we can attempt to transform the data.

Remedial Measures

To remedy these issues, we can attempt to transform the data.

• Square Root Transformation.

$$X_{ij}^{\star} = \sqrt{X_{ij}}$$

Useful if σ^2 is proportional to μ_i . I.e., $\sigma^2 = \sigma_i^2 = c\mu_i$ for some c. • Logarithmic Transformation.

$$X_{ij}^{\star} = \log(X_{ij})$$

Useful if the standard deviation (σ) is proportional to μ_i

• Inverse Transformation:

$$X_{ij}^{\star} = rac{1}{X_{ij}}$$

Matt Arthur (UCR GradQuant)

< □ > < □ > < □ > < □ > < □ > < □ >

Remedial Measures

To remedy these issues, we can attempt to transform the data.

Box-Cox transformation:

$$X_{ij}^{\star}(\lambda) = egin{cases} rac{X_{ij}^{\lambda}-1}{\lambda} & ext{if } \lambda
eq 0 \ \log(X_{ij}) & ext{if } \lambda = 0 \end{cases}$$

These transformations can help to address non-constant variance. In some cases, they may also address non-normal data.

- They will not address dependent data, and may not be effective in all situations.
- They may also have an effect of the interpretability of the model.

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures

Two-Way ANOVA

5 Post Hoc Comparisons

6 Random Effects

・ 同 ト ・ ヨ ト ・ ヨ

Introduction to Two-Way ANOVA

Until now, we have dealt only with the case where we have one treatment.

- What if we have multiple grouping variables?
- What if we are using repeated-measures data?
- What if we want to include a covariate?

Two-Way ANOVA allows us to add a second grouping variable. The basic ideas are the same, but the math is a bit more complicated.

Notation

When we have two categorical explanatory variables (Factor A, and Factor B):

- Continuous Response Variable: Y_{ijk} = outcome for the *k*th replication of the *i*th level of Factor A and the *j*th level of Factor B
- Factor A has a levels: $i = 1, \ldots, a$
- Factor B has b levels: $j = 1, \dots, b$
- Observations in cell (i, j) are indexed by k, where $k = 1, 2, ..., n_{ij}$
- We say the design is *balanced* if $n_{ij} = n$ for all i, j

< □ > < □ > < □ > < □ > < □ > < □ >

Randomly Selected 36 People from a Car Market that bought the same model of car. Suppose these people received different cash offers from their dealer. The 36 customers represent 3 age-based categories: Young, Middle-Aged, Elderly. There are 12 customers in each age-category. Moreover, half of the 36 customers identified as Male, the other half Female.

Our Interest: Does Age or Gender of customers affect the amount of cash offered?

Suppose we randomly selected 36 People from a Car Market who all bought the same model of car. Suppose these people received different cash offers from their dealer. The 36 customers represent 3 age-based categories: Young, Middle-Aged, Elderly. There are 12 customers in each age-category. Moreover, half of the 36 customers identified as Male, the other half Female.

Our Interest: Does age or sex of customers affect the amount of cash offered?

- Now, we are interested in two factors. Age (3 levels) and Sex (2 levels).
- The total number of observations is 36. There are 6 observations per Age/Sex combination

イロト 不得下 イヨト イヨト 二日

The cash offer results are given in the following table (unit = thousands):

Group		Age						
		Young		Middle		Elderly		
Sex		21	22	30	28	25	21	
	Female	23	22	29	27	22	22	
		19	23	26	27	23	21	
	Male	21	21	26	28	23	21	
		22	19	29	27	19	20	
		20	25	27	29	20	20	

< □ > < 同 > < 回 > < 回 > < 回 >

We write a fixed linear model to explain the data:

$$Y_{ijk} = \mu + lpha_i + eta_j + (lphaeta)_{ij} + \epsilon_{ijk}$$

where $\epsilon_{ijk} \sim N(0, \sigma^2)$, and are independent.

• Grand Mean (μ) :

$$\hat{\mu} = \bar{Y}_{..}$$

$$\alpha_i \to \bar{Y}_{i..} - \bar{Y}_{...}, \quad \beta_j \to \bar{Y}_{.j.} - \bar{Y}_{...}$$

• Interaction Term: $(\alpha\beta)_{ij}$

$$(\alpha\beta)_{ij}
ightarrow ar{Y}_{ij\cdot} - ar{Y}_{i\cdot\cdot} - ar{Y}_{\cdot j\cdot} + ar{Y}_{\cdot\cdot\cdot}$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Again, for Two-Way ANOVA, we partition variability into components:

$$Y_{ijk} - Y_{...} = egin{array}{c} (Y_{i..} - Y_{...}) \ + & (Y_{.j.} - Y_{...}) \ + & (Y_{ijk} - Y_{ij.}) \ + & (Y_{ij.} - Y_{i..} - Y_{.j.} + Y_{...}) \end{array}$$

And this relationship again holds if we square and sum over all i, j, k.

イロト イポト イヨト イヨト

Why do we introduce an interaction term?

- For example: If you ask a car dealer, "Do you prefer giving more cash to Males vs. Females?", and they reply: "It depends how old they are."
- This means there exists an interaction effect.
- When an interaction effect is present, the impact of one factor on the response depends on the level of the other factor.

Plot of Mean Cash by Age and Sex

61/88

The cash offer results are given in the following table (unit = thousands):

Group		Age						Moon	
		Young		Middle		Elderly		Iviedii	
Sex	Female	21	22	30	28	25	21		
		23	22	29	27	22	22	$Y_{.1.} = 23.94$	
		19	23	26	27	23	21		
	Male	21	21	26	28	23	21		
		22	19	29	27	19	20	$Y_{.2.} = 23.17$	
		20	25	27	29	20	20		
Mean		$Y_{1} = 21.5$ Y_{2}		Y ₂ :	$Y_{2} = 27.75$		= 21.42	<i>Y</i> = 23.56	

イロト イポト イヨト イヨト

Two-Way ANOVA allows us to test the following hypotheses:

• Main Effect of Factor A (Age):

 $H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$ vs. $H_1:$ at least one level is significant

• Main Effect of Factor B (Sex):

 $H_0: \beta_1 = \beta_2 = 0$ vs. $H_1:$ at least one level is significant

Interaction Effect:

$$H_0: (\alpha\beta)_{ij} = 0$$
, for all i, j

vs. H_1 : at least one interaction term is significant

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

For the Two-Way ANOVA Table, we partition the total variability in the observed data into sums of squares for each Factor, and for the interaction:

- SST = $\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (Y_{ijk} \bar{Y}_{...})^2$ = SSA + SSB + SSAB + SSE
- The corresponding *degrees of freedom* associated with SSA, SSB, and SSAB are a 1, b 1, and (a 1)(b 1), respectively.
- Decisions about the preceding hypotheses are made by comparing ratios of mean squares. For instance, we could make a statement about Factor A by using the test statistic:

$$F_A = \frac{\mathsf{SSA}/(a-1)}{\mathsf{SSE}/(ab(n-1))}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

While it is definitely possible to conduct Two-Way ANOVA by hand, I do not recommend doing so. Any statistical software should be able to do this for you. In R, we can conduct a Two-Way ANOVA as follows.

< □ > < □ > < □ > < □ > < □ > < □ >

First, read the data in long form:

<pre>head(frame,</pre>	8)
------------------------	----

##		cash	age	sex
##	1	21	young	female
##	2	22	young	female
##	3	23	young	female
##	4	22	young	female
##	5	19	young	female
##	6	23	young	female
##	7	21	young	male
##	8	21	young	male

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Next, use the aov() function in almost exactly the same way as before:

<pre>summary(aov(frame\$cash ~ frame\$age*frame\$sex))</pre>								
##		Df	Sum Sq	Mean Sq	F value	Pr(>F)		
##	frame\$age	2	316.7	158.36	66.291	9.79e-12	***	
##	frame\$sex	1	5.4	5.44	2.279	0.142		
##	<pre>frame\$age:frame\$sex</pre>	2	5.1	2.53	1.058	0.360		
##	Residuals	30	71.7	2.39				
##								
##	Signif. codes: 0 '*	·**'	0.001	'**' 0.0	1 '*' 0.	.05 '.' 0.	1 '	

A D N A B N A B N A B N

The results of the ANOVA table suggest:

- There is no interaction between sex and age
- Sex does not have an appreciable impact on cash offerings.
- Age, however, does seem to have a significant effect on the amount of cash offered at this car dealership.

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures

Two-Way ANOVA

6 Post Hoc Comparisons

Random Effects

・ 同 ト ・ ヨ ト ・ ヨ

Post-Hoc Comparisons

ANOVA compares all individual mean differences simulatneously. A significant result implies that at least one difference in means is statistically significant.

- However, ANOVA alone tells us nothing about which means differ significantly from one another.
- Post-Hoc tests are follow-up tests conducted to determine exactly which mean differences are significant, and which are not.

Post-Hoc Comparison

Back to the example presented for One-Way ANOVA:

- We know that cholesterol varies significantly with dose. That is, if μ_i is the mean cholesterol for dose *i*, μ_1 , μ_2 , and μ_3 are not all the same number.
- However, we do not know which of these means are different from the others.
Post-Hoc Comparison

In this case, a **multiple comparison** should be done. We would like to individually compare:

- μ_1 and μ_2
- μ_1 and μ_3
- μ_2 and μ_3

However, when doing multiple comparisons our probability of falsely rejecting H_0 increases. If $\alpha = 0.05$, then *each comparison* will have a 5% chance of false rejection. Thus, a simultaneous statement about the three comparisons above will be incorrect with probability greater than 5%.

< □ > < □ > < □ > < □ > < □ > < □ >

Post-Hoc Comparison

A good testing procedure should take into account this inflated error for multiple comparisons. The following are common methods of multiple comparison:

- Least Significant Difference (LSD)
- Tukey's Test
- Bonferroni Test
- Scheffé's Test

Each of these tests have different strengths and weaknesses.

Post-Hoc Comparison

Each of these tests have different strengths and weaknesses.

- The **Bonferroni Test** is most useful when we are only interested in a small number of planned comparisons.
- Tukey's Test is used when we are only interested in performing all (or most) pairwise tests (i.e., tests of the form H₀ : μ_i = μ_j, i ≠ j)
- The **Scheffé Test** is used when doing anything that might be considered *data snooping* (i.e., unplanned comparisons)

Post Hoc Comparison

There is a tradeoff between a test being powerful (having a large number of correct rejections) and conservative (having a small number of incorrect rejections):

Most Powerful	LSD	Least Conservative
Î	Tukey	
	Bonferroni	
Least Powerful	Scheffé	Most Conservative

We can run all the aforementioned post-hoc tests in R:

```
library(stats) #TukeyHSD
library(DescTools) #ScheffeTest
```

Warning: package 'DescTools' was built under R version
3.6.2

```
model <- aov(dose[,1] ~ dose[,2])</pre>
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We can run all the aforementioned post-hoc tests in R:

```
pairwise.t.test(dose$dose, dose$group,
                p.adjust.method = "bonferroni")
##
   Pairwise comparisons using t tests with pooled SD
##
##
## data: dose$dose and dose$group
##
##
          group1 group2
## group2 1.000 -
## group3 0.051 0.179
##
## P value adjustment method: bonferroni
```

< □ > < 同 > < 回 > < 回 > < 回 >

We can run all the aforementioned post-hoc tests in R:

```
TukeyHSD(aov(dose[,1] ~ dose[,2]))
##
    Tukey multiple comparisons of means
##
       95% family-wise confidence level
##
## Fit: aov(formula = dose[, 1] ~ dose[, 2])
##
## $`dose[, 2]`
##
                diff
                           lwr
                                     upr padj
## group2-group1 -12 -58.20875 34.208754 0.7720679
## group3-group1 -48 -94.20875 -1.791246 0.0416601
## group3-group2 -36 -82.20875 10.208754 0.1362300
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

We can run all the aforementioned post-hoc tests in R:

```
ScheffeTest(model)
```

```
##
##
    Posthoc multiple comparisons of means: Scheffe Test
      95% family-wise confidence level
##
##
## $`dose[. 2]`
                diff lwr.ci upr.ci pval
##
## group2-group1 -12 -60.28226 36.2822566 0.7903
## group3-group1 -48 -96.28226 0.2822566 0.0514 .
## group3-group2 -36 -84.28226 12.2822566 0.1580
##
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
                                       ▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの()
```

Matt Arthur (UCR GradQuant)

Overview

Introduction to ANOVA

One-Way ANOVA

- Example
- One-Way ANOVA Table

3 ANOVA Assumptions

- Normality
- Constant Variance
- Remedial Measures
- 4 Two-Way ANOVA
- 5 Post Hoc Comparisons

Random Effects

・ 同 ト ・ ヨ ト ・ ヨ

We have seen that Two-Way ANOVA can generalize the number of treatments in a study. In fact, we can conduct *n*-way ANOVA using the same principles (and increasingly difficult SS formulas!)

But *n*-way ANOVA still requires that our observations are independent.

• This may be an unreasonable assumption, especially if we are taking repeated measurements on a single subject. In this case, we would expect observations taken within each subject to be *dependent*

< ロ > < 同 > < 回 > < 回 > < 回 > <

We can address this by incorporating a random quantity at the subject level. For instance, if Y_{ij} is the *j*th observation for the *i*th subject, then we could assume

$$\gamma_{ij} = \mu + \tau_i + \epsilon_{ij}$$

Where $\epsilon_{ij} \stackrel{i.i.d}{\sim} N(0, \sigma_{\epsilon}^2)$, $\tau_i \stackrel{i.i.d}{\sim} N(0, \sigma_{\tau}^2)$, and τ_i 's are independent of the ϵ_{ij} 's.

This setup assumes that $E(Y_{ij}) = 0$, $Var(Y_{ij}) = \sigma_{\epsilon}^2 + \sigma_{\tau}^2$ and

•
$$\operatorname{Cov}(Y_{ij}, Y_{ij'}) = \sigma_{\tau}^2$$
 for $j \neq j^*$

•
$$Cov(Y_{ij}, Y_{i'j}) = 0$$
 for $i \neq i'$

Thus, the model assumes that there is correlation within subjects, but not across subjects

イロト イポト イヨト イヨト

Random Effects models are typically fit in R using the lmer() or lme4() functions.

(日) (四) (日) (日) (日)

Credit

This workshop is based on a similar workshop delivered by Ruihan Lu in Fall 2020.

A D N A B N A B N A B N

Services

Take Advantage of GradQuant's Services:

- GradQuant offers individual consultations through Skype. You are always welcome to make an appointment with us.
- Weekly Drop-in Hours on Wednesday (12pm 2pm). Grad Students and Postdocs can meet with GradQuant consultants without an appointment, on a first-come, first-served basis.
- Weekly Hacky Hours on Monday (10am 12pm). Hacky Hours are open to the whole campus, serving undergraduate and graduate students, faculty, and staff. No appointment is required.
- For detailed information on how to utilize our services, please visit: https://gradquant.ucr.edu

< □ > < □ > < □ > < □ > < □ > < □ >

Questions?

Matt Arthur (UCR GradQuant)

Analysis of Variance (ANOVA)

■ ト 4 ■ ト ■ つへで 18 Jan 2022 88 / 88

メロト メポト メヨト メヨト