Introduction to R - Part I

Matt Arthur

GradQuant University of California Riverside

29 Sep 2022

Arthur, 2022 (UC Riverside)

Introduction to R - Part I

29 Sep 2022 1 / 33

Introduction

- Installing R and RStudio
- Using R as a Calculator
- 4 Data Structures in R
- 5 Data Management in R
- 6 Concrete Example

S

R is an open source software used for statistical computing and graphics.

- Easy to download, with no license restrictions.
- Provides support for powerful computing tasks, such as machine learning.
- Intuitive and flexible graphics support.
- Works well with other programs; i.e, SQL and Excel

Introduction

- 2 Installing R and RStudio
 - 3 Using R as a Calculator
 - 4 Data Structures in R
 - 5 Data Management in R
 - 6 Concrete Example

Go to https://www.r-project.org

- Click the "Download" link on the left.
- Select a mirror from which to download.
- Follow the download instructions for your operating system.

R Studio is a graphical user interface that makes R much easier to use.

To download R Studio, go to https://www.rstudio.com.

- R must be installed for R Studio to run.
- Go to Products > R Studio
- Follow the instructions for downloading the free version of R Studio Desktop.

Introduction

- Installing R and RStudio
- 3 Using R as a Calculator
- 4 Data Structures in R
- 5 Data Management in R
- 6 Concrete Example

Using R as a Calculator

One of the simplest ways to use R is as a calculator:

2 + 2			
## [1] 4			
2^3			
## [1] 8			
$2 + (3^2 - \sin(46))$			
## [1] 10.09821			
exp(1.3)	e ^{1.3}		
## [1] 3.669297			
D	c .:		

R uses standard order of operations and has many predefined functions which make it easy to use in this way.

Arthur, 2022 (UC Riverside)

Introduction to R - Part I

We can also use R to conduct logical tests:

2 == 3 ## [1] FALSE 2 < 3 ## [1] TRUE

As in other languages, we use "==" instead of "=" to test for equality.

(本語)とう

Introduction

- Installing R and RStudio
- 3 Using R as a Calculator
- 4 Data Structures in R
 - 5 Data Management in R
 - 6 Concrete Example

Data Structures in R

R can store and use objects that we create in variables

 $x \leftarrow 2 * 3 \leftarrow print(x)$

[1] 6

R can also store sequences of values, called vectors

Note: The use of <- as an assignment operator in R.

We can access all or part of vectors defined in R by using square brackets: []

y[1]
[1] 2
y[2:4]
$$\rightarrow$$
 y[c(2,3,4)] y[2,3,4]
[1] 4 6 8

Most mathematical operations that can be applied to scalars can also be applied to vectors in R:

• Operators to vectors are applied elementwise:

```
x <- c(1, 2, 3, 4)
y <- c(2, 4, 6, 8)
print(x + y)
## [1] 3 6 9 12
```

• When a shorter vector is combined with a longer vector, elements in the shorter vector are **recycled**:

• Single numbers can be thought of as vectors of length-1

y <- c(2, 4, 6, 8) y * 2 ## [1] 4 8 12 16

- 3 →

A matrix is essentially a 2D array in R. Any vector can be put into matrix form using the matrix() function:

• Matrices can be ordered in different directions:

Matrices

m1(1,4]

• We can access matrix components using again using square brackets:

```
m1[1,3] # element in row 1, column 3
## [1] 7
m2[,3] # all elements in column 3
## [1] 3 6 9
m1[1,] # all elements in row 1
## [1] 1 4 7
```

Note: Vectors and matrices are indexed starting at 1.

Matrix Operations

• Matrix Multiplication

m	%*%	m2		
##	\bigcirc	[,1]	[,2]	[,3]
##	[1,]	66	78	90
##	[2,]	78	93	108
##	[3,]	90	108	126

• • = • •

- (日)

• Transpose

t((m1)			
##		[,1]	[,2]	[,3]
##	[1,]	1	2	3
##	[2,]	4	5	6
##	[3,]	7	8	9

• Diagonal Matrices

	_					
diag(c(1, 2, 3))						
##		[,1]	[,2]	[,3]		
##	[1,]	1	0	0		
##	[2,]	0	2	0		
##	[3,]	0	0	3		

< ∃ ►

• Inverse of a square Matrix:

```
A <- matrix(c(1, 3, 5, 7), nrow = 2)
solve(A)
## [,1] [,2]
## [1,] -0.875 0.625
## [2,] 0.375 -0.125</pre>
```

• Row and Column Means

rowMeans(A)
[1] 3 5
colMeans(A)
[1] 2 6

(4) (日本)

Introduction

- Installing R and RStudio
- 3 Using R as a Calculator
- 4 Data Structures in R
- 5 Data Management in R

6 Concrete Example

A working directory is the default location where R looks for files.

• To view your current working directory, use the getwd() function:

getwd()

• To change your working directory, use setwd():

```
setwd("desired_path")
    ("~/Downloads")
```

Importing Data: Using the File Tab

R Studio has a File tab that can be used to import data files:

· · · · · · · · · · · · · · · · · · ·	New File New Project Open File Recent Files	► #0	🛛 🕶 Addins 👻		RSti	udio	
Console Termi	Open File	жо	- Addins -				
~/ @		жо					
~/ ~	Recent Files						
		•					
	Open Project		5"				
Converight (C)	Open Project in New Sess	ion	s l Computing				
Platform: x86_(Recent Projects		e compareng				
R is free soft	Import Dataset	•	From Text (base	e)			
	0	жs	From Text (read	dr)			
- 13 C	Save	жS					
	Save As		From Excel				
Natural lang	Save All	\7₩S	From SPSS				
	Publish		From SAS				
R is a collabo			From Stata				
Type 'contribu	Print						
'citation()' o	Close	жw	lications.				
	Close All		hala an				
21.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			help, or				
Type 'q()' to	Close All Except Current	乙心將(M)	ιp.				
	Close Project						
[Workspace loa							
	Quit Session	жQ					

Alternatively, you can read data by using commands directly from R:

• From a Comma-Delimited File:

→ ∃ →

Many data-import utilities reside in auxiliary libraries which are not loaded in base R. To install these libraries, use the install.packages() function:

install.packages("readxl")

R may need to be restarted prior to loading the packages you installed.

Introduction

- Installing R and RStudio
- 3 Using R as a Calculator
- 4 Data Structures in R
- 5) Data Management in R

6 Concrete Example

We will do several hands-on exercises with the "Concrete Compressive Strength" dataset from the UC Irvine Machine Learning Data Repository[1]. You may access the data using the following link:

• https://archive.ics.uci.edu/ml/datasets/Concrete+ Compressive+Strength To download the data:

- Navigate to the link on the previous slide
- Click on the "Data Folder" link at the top of the page
- Download Concrete_Data.xls

To load the data into R: First determine the directory to which you saved the Concrete Data.

- Usually will be in your "Downloads" folder
- " \sim /Downloads" on Unix
- Something like "C:/Users/your-user-name/Downloads" on Windows

```
library(readxl)
concrete <- read_excel("~/Downloads/Concrete_Data.xls")
View(concrete)</pre>
```

Next week, we'll continue working with the Concrete Dataset in R:

- Basic viewing/summarizing of the data
- Running a linear regression in R to predict concrete compressive strength
- Managing tabular data

If you are interested in learning more about R, please consider the following workshop, which is offered later this quarter:

- Introduction to R: Part II: Thursday, 10/6/2022, 1:00PM 1:50PM
- Linear Models in R: Monday 10/3 & 10/10: 2:00PM 2:50PM
- Data Visualization in R: Tuesday 10/11 & 10/18: 1:00PM 1:50PM
- Remember to register!

- GradQuant offers individual consultations via Skype. You are always welcome to make an appontment with us.
- Weekly Drop-in hours are held Wednesdays 10AM-12PM. Graduate students and postdocs can meet in GradQuant consultants without an appointment on a first-come, first-served basis.
- Weekly Hacky Hours are held on Mondays 1PM–3PM. Hacky Hours are open to the whole campus, serving undergraduate and graduate students, faculty, and staff. No appointment is needed.
- For detailed information about how to make an appointment, visit our website: https://gradquant.ucr.com

This presentation was adapted from a previous workshop delivered by Lead Consultant Ruihan Lu in 2020.

The Concrete Data were owned and donated to the UCI Machine Learning Repository by I-Cheng Yeh:

I-Cheng Yeh.

Modeling of strength of high performance concrete using artificial neural networks.

Cement and Conrete Research, 28(12):1797-1808, 1998.

Questions?

イロト イヨト イヨト イヨ