Machine Learning in Python

Rohith Mohan
GradQuant
Spring 2018



% Chet Haase

A Machine Learning algorithm walks into a
bar.

The bartender asks, "What'll you have?"
The algorithm says, "What's everyone else
having?"

Interviewer: What's your biggest strength?
Me: I'm an expert in machine learning.
Interviewer: What's 9 + 10?

Me: Its 3.

Interviewer: Not even close. It's 19.

Me: It's 16.

Interviewer: Wrong. Its still 19.

Me: It's 18.

Interviewer: No, it's 19.

Me: it's 19.

Interviewer: You're hired

https://twitter.com/myusuf3/status/995425049170489344



Traditional Programming

Data

00000
* Getting computers to program

themselves
Output * Coding is the bottleneck, let data
dictate programming

Program .

Machine Learning

Data
00000

Output
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http://www.hlt.utdallas.edu/~vgogate/ml/2013f/lectures.html



Formal Definitions

e Arthur Samuel (1959)

* “Machine Learning: Field of study that gives computers the ability to learn
without being explicitly programmed.”

* Created a program for computer to play itself in checkers (10000s games) and
learn at IBM

 Tom Mitchell (1998)

* “Well-posed Learning Problem: A computer program is said to learn from
experience E with respect to some task T and some performance measure P, if
its performance on T, as measured by P, improves with experience E.”

Andrew Ng Machine Learning Coursera



Machine Learning

* Developed out of initial work in Artificial Intelligence (Al)

* Increased availability of large datasets and advances in computing
architecture boosted usage in recent times

Overview | edi]

“»

Decade # Summary

<1950s Statistical methods are discovered and refined.

1950s Pioneering machine learning research is conducted using simple algorithms.

1960s Bayesian methods are introduced for probabilistic inference in machine learning.[)
1970s 'Al Winter' caused by pessimism about machine learning effectiveness.

1980s Rediscovery of backpropagation causes a resurgence in machine learning research.

Work on machine learning shifts from a knowledge-driven approach to a data-driven approach. Scientists begin
1990s creating programs for computers to analyze large amounts of data and draw conclusions — or “leam” — from the
results.’?] Support vector machines (SVMs) and recurrent neural networks (RNNs) become popular.

2000s Kernel methods grow in popularity,[®! and competitive machine learning becomes more widespread.!4!

Deep leaming becomes feasible, which leads to machine learning becoming integral to many widely used software

2010s . N
services and applications.

https://en.wikipedia.org/wiki/Timeline_of_machine_learning



Natural Language Processing
+ Computer Vision

Mining and clustering
gene expression data to
identify individuals
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https://www.irishnews.com/magazine/science/2018/01/01/news/12-of-the-biggest-scientific-
breakthroughs-of-2017-that-might-just-change-the-world-1222695/

http://www.idownloadblog.com/2016/05/12/google-translate-offline-mode/
https://www.flickr.com/photos/theadamclarke/2589233355  https://de.wikipedia.org/wiki/Genexpressionsanalyse



Common steps in ML workflow

* Collect data (various sources, UCI data repository, news orgs, Kaggle)
* Prepare data (exploratory analysis, feature selection, regularization)
 Selecting and training model (train and test datasets, what model?)
* Evaluating model (accuracy, precision, ROC curves, F1 score)

e Optimizing performance (change model, # of features, scaling)



scikit-learn

.wn Home Installation Documentation ~  Examples

Google Custom Search

scikit-learn

Machine Learning in Python

http://scikit-learn.org/stable/index.html




Preprocessing

* Clean data and deal with missing values, etc.
* Feature scaling - rescaling features to be more sensible

 Standardization - getting various features into similar range (e.g. -1 to
1)
e Square footage of a house (100s of ft) vs # of rooms (1-5)

>>> from sklearn import preprocessing
>>> import numpy as np
>>> X_train = np.array([[ 1., -1., 2.],
[ 2., ©., o.], >>> X_scaled.mean(axis=0)
e [ 6., 1., -1.]]) array([ ., 0., ©.])
>>> X_scaled = preprocessing.scale(X_train)
>>> X_scaled.std(axis=0)

>>> X_scaled array([ 1., 1., 1.])

array([[ 6. ..., -1.22..., 1.33...],
[ 1.22..., ©. . -9.26...],
[-1.22..., 1.22..., -1.86...]])

http://scikit-learn.org/stable/modules/preprocessing.html



Preprocessing

* Clean data and deal with missing values, etc.
* Feature scaling - rescaling features to be more sensible

 Standardization - getting various features into similar range (e.g. -1 to
1)
e Square footage of a house (100s of ft) vs # of rooms (1-5)
* Normalization — scaling to some standard (e.g. subtract mean &
divide by SD)

* Many others (regularization,imputation, generating polynomial
features, etc.)

http://scikit-learn.org/stable/modules/preprocess

ing.htm



Preprocessing

* Clean data and deal with missing values, etc.
* Feature scaling - rescaling features to be more sensible

 Standardization - getting various features into similar range (e.g. -1 to
1)
e Square footage of a house (100s of ft) vs # of rooms (1-5)

* Normalization — scaling to some standard (e.g. subtract mean &
divide by SD)
>»> X =[[ 1., -1., 2.],
[ 2., e., 0.],
[@., 1., -1.]]

>>> X_normalized = preprocessing.normalize(X, norm="12")

>>> X_normalized

array([[ @.40..., -0.40..., ©.81...],
[1. ..., ©. ..., O. 1,
[ Q. “eey .70..., -0.70... ] ] | http://scikit-learn.org/stable/modules/preprocessing.html



Importance of feature scaling

Training dataset after PCA
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http://scikit-learn.org/stable/auto_examples/preprocessing/plot_scaling_importance.html

2nd principal component

Standardized training dataset after PCA
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Number of households

Number of households

Unscaled data
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Train Test (Cross Validate?)

 Why do we need to split up our datasets?
e Overfitting

* Split dataset

* Train — for training your model on
* Test — evaluate performance of model
e Usually 40% for testing is enough

e Validation set?

e Cross-validation

* Split up training set into subsets and evaluate performance (can be more
computationally expensive but conserves data)

* Hyper-parameter tuning



Bias-variance tradeoff

Low Bias

High Bias

http://scott.fortmann-roe.com/docs/BiasVariance.html

Low Variance

High Variance

Degree 1
MSE = 4.08e-01(+/- 4.25e-01)

— Model
~ True function
e Samples

Degree 4 Degree 15
MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.45e+08)
—— Model — Model
—— True function ~—— True function
e Samples e Samples

Underfitting
High Bias

http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html#sphx-glr-auto-examples-model-selection-

plot-underfitting-overfitting-py

Overfitting
High Variance



Bias-variance tradeoff

Optimum Model Complexity

Error

Total Error

Variance

L

Model Complexity

http://scott.fortmann-roe.com/docs/BiasVariance.html



How to select a model?



scikit-learn
algorithm cheat-sheet

classification

regression

clustering

WORKING
NoT
WORKING

YES

o dimensionality
reduction

http://scikit-learn.org/stable/tutorial/machine_learning_map/index.html



Supervised vs Unsupervised Learning

e Supervised
e Regression, classification
* Input variables, output variable, learn mapping of input to output

* Unsupervised
 Clustering, association, etc.
* No correct answers and no teacher

* Semi-supervised
 Partially labeled dataset of images
* Mixing both techniques is what occurs in real-world



Regression

* Linear regression (OLS)

Y = BO + zj=1._p BJXJ +E

* Prediction

* Multiple variables/f
e Feature selection

https://www.xIstat.com/en/solutions/features/ordinary-least-squares-regression-ols

>>> from sklearn.feature_selection import VarianceThreshold
>>> X = [[e, o, 1], [e, 1, ], [1, e, @], [e, 1, 1], [e, 1, @], [e, 1, 1]]
>>> sel = VarianceThreshold(threshold=(.8 * (1 - .8)))

>>> sel.fit_transform(X)

array([[o,
[1,
[@,
[1,
[1,
[1,

1],
e],
e],
1],
e],
11D

http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html



Feature Selection

Polynomial regression

Price

(y)

S.ize (x)

- 2
2 0y + 01z + 0227

- L_> 90 + 91 T+ 921-2 4. 931:3

https://www.cou

rsera.org/learn/machine-learning



Feature Selection

Choice of features

Price

(y)

Size (x)

— ho(x) = O + 0, (size) + O (size)?

(51 3(.—?ﬂ

— /L()(_,’Iﬁ) o 0() . 01 (513() i 0-2

———

https://www.coursera.org/learn/machine-learning



Regression

* Linear regression (OLS)

Y=0By+ ZJ:1__p BJXJ 4

* Prediction

* Multiple variables/features?
* Feature selection
e Length, width of a house (area?)
* Regularization

https://www.xIstat.com/en/solutions/features/ordinary-least-squares-regression-ols http://scikit-learn.org/stable/auto_examples/linear_model/plot_ols.html



Regularization

Price
Price
e

Size of house Size of house

0o + 612 + O22° 0o + 612 + Or2” 3+7;?Q
0 + 012 + O 0o+ 01z 2x+\@§ 4

https://www.coursera.org/learn/machine-learning



Regularization

name

— bathrooms

— bedrooms
100000 - N
— condition
— floors
— grade
50000 - — sqft_above
sqft_living
— sqft_living15
— sqft_lot
— sqft_lot15

- view

Value of coefficient
' 4
|

- waterfront
— yr_built
-50000 - — yr_renovated

1e+06 1e+08
L2 regularisation

http://enhancedatascience.com/2017/07/04/machine-learning-explained-regularization/



Performance
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http://scikit-learn.org/stable/auto_examples/model_selection/plot_train_error_vs_test_error.html#sphx-glr-auto-examples-model-selection-

plot-train-error-vs-test-error-py




Classification — Logistic Regression

Y= bo T bl X 4= Llinear Model

Logistic Model

http://www.saedsayad .com/logistic_regression.htm



Classification — Logistic Regression

Breast Cancer Logistic Regression Example

Label
Probabilty

Malignant

Features: Clump Thickness, Uniformity of
Cell Size, Uniformity of Cell Shape,
Marginal Adhesion, Single Epithelial Cell
Size, Bare Nuclei, Bland Chromatin,
Normal Nucleoli, Mitoses

https://medium.com/technology-nineleaps/logistic-regression-bac1db38cb8c https://mapr.com/blog/predicting-breast-cancer-using-apache-spark-machine-learning-logistic-regression/



Classification — SVM

http://scikit-learn.org/0.18/auto_examples/svm/plot_separating_hyperplane.html



relevant elements
I ]

false negatives true negatives

Evaluating Performance

* Accuracy — how many predictions are corre
dataset?

e Can be a flawed metric

* Precision and Recall

selected elements

H mal lected How many relevant
iter re rel nt? items are select
Precision =

Recall = —
[ rpd]

https://en.wikipedia.org/wiki/Precision_and_recall



relevant elements
I ]

false negatives true negatives

Evaluating Performance

* Accuracy — how many predictions are corre
dataset?

e Can be a flawed metric

* Precision and Recall

selected elements

* ROC curves
* F1 score

Precision = Recall = —

2 precision - recall
F = =2 — :
! L precision + recall
recall precision




Evaluating Performance

Some extension of Receiver operating characteristic to multi-class
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http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selection-plot-roc-py



Classification - K-Nearest Neighbors
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Clustering

* Unsupervised learning
e Can help you understand structure of your data

* Various types of clustering: K-means, Hierarchical, Ward



K-means

* Randomly choose k centroids
* Form clusters around it
e Take mean of cluster to identify new centroid

¢ Repeat until convergence
K-means clustering example

: °ee ®eo ,
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https://www.youtube.com/watch?v=_aWzGGNrcic —_—






