MACHINE LEARNING
IN R

GradQuant Workshop, February 27t, 2018

Overview

m Fundamentals of Machine Learning
m Regression tasks
m Classification tasks

m Deep Learning with TensorFlow

Why is this workshop a little different?

m | usually like to run code as part of the workshop

m Many machine learning tasks take too long to run as part of the workshop
- Some models took three episodes of Twin Peaks to run!
- That would make for a very awkward workshop

m This is meant as a introduction to an introduction to an overview of ML

What is Machine Learning?

m Computer science field devoted to learning with data
m Evolved out of desire for Al and computational learning
m Related to computational statistics, and heavily utilizes numerical optimization

m Related to, but not equivalent to, data mining
— Data mining is more exploratory

ing?

h data

learning

RN -

y utilizes numerical optimization

Convex Optimization??

Prediction vs. Understanding

m The goal of many research projects is to understand processes influencing our
outcome

m Goal of machine learning is to predict our outcome
— This often includes a tradeoff with interpretation

m For example, consider the creepiness of Facebook photos

m Many of these methods are ‘black boxes’

Separating Test and Training Data

m Machine Learning involves the use of two datasets
— Training and test data

m The use of test data ensures that we train and test our model on different data
points

m Training data often give us an overly optimistic view of our model
m Test data provide a more accurate view of our model performance

m Important to occasionally update our model with new data to avoid rot

Preprocessing

m Some decisions about the data need to be made before constructing models

m Some models prefer data to be on a 0-1 scale, some prefer z-scores, others don'’t
care

m Most models will blow up your computer if there are missing data

m Some other issues to consider, such as...

L ow variance

m Imagine a variable with 98% of the sample being a 1, the other 2% being a O
— This will likely unduly influence our model

m Rusesa 10% rule to determine low variance predictors
m Often the best (and easiest) solution is to delete variables

m But may be usable if the training data set is sufficiently large

High correlation

m Many models will also have trouble optimizing if variables are too related
m R can find those variables that are highly correlated

m Again, we can chose to delete these variables

- Best solution with perfect collinearity (i.e. columns for Employed and
Unemployed)

m We can also preprocess by using dimensionality reduction (e.g. PCA)

Over/Underfitting

m Our training model can either over or under fit the data
- Ideal is a model that performs well on both datasets

m Overfitting occurs when our model performs well on training data, but poor on test
data

- May want to try a regularization technique, or a simpler model

m Underfitting occurs when our model performs poorly on training data
- Try a more complex model, or different predictors

Tuning Parameters

m Most models have some modifications that can be made

m R will automatically search a limited subspace of tuning parameters
- We can also tell it what to use

m Finding optimal tuning parameters also part of model training

m | will point out relevant tuning parameters, but forego exhaustive search

Regression Tasks

m Linear Regression

m Regularization techniques

m Multivariate Adaptive Regression Splines
m K-Nearest Neighbors

m Regression Trees

m Random Forests

m Identifying the most important predictors

Measuring Performance in Regression
Tasks

m [wo main statistics when predicting continuous outcomes

m RMSE is equal to the average misprediction of our outcomes values
1 A~
- RMSE= [153 (-)7

m R?isthe amount of variability in our outcome that our model is explaining
R2 — 1 _ SSresidual
SStotal

Wine Quality Dataset

m Wine quality dataset from the UCI Machine Learning Repository

m 1,599 ratings of quality of different wines
- 1-8 scale, with 1 being undrinkable and 8 being amazing

m 11 predictors of wine quality
- e.8. Chlorides, ABV

m Our task is to create a model that adequately predicts

Wine Quality Dataset

ey Bz
winequalityj

A 2 X
fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide

=]

=]
o

0700 0.00
0.880 0.00
0.¥&0 0.04
0.280 0.56
0.700 0.00
0660 0.00
0.600 0.06
0.650 0.00
0.580 0.02
0500 0.36

=

0.0v6 11.0
25.0
15.0
17.0
11.0
13.0
15.0
15.0

9.0
17.0

3 A

=]
e

DoWw Mmoo
=]

=

o DO e R |
[O i R |
=] B 0
(T N

—t

=]

[I = B+
e R e |
]
]
L |
L B

=]

=
[
=
oy o
[I

]

2
4
7.4
9
3
E

=]

(¥
=
o O o

12 columns 2 3 5 = 100 MNext

wine <- read.csv('winequality.csv')

trainrows <- createDataPartition(wine$quality, p = .8, list = FALSE)
winetrain <- wine[trainrows,]

winetest <- wine[-trainrows,]

dim(winetrain)

[1] 1281 12
dim(winetest)

[1] 318 12

Linear Regression

m Linear regression is often used as the “baseline” or default model
— Other models will be compared this regression
m Objective is to find the plane that most reduces the Sums of Squares Error (SSE)
- SSE = ¥ini(vi — ¥)?
m The optimal plane of parameters is:
_ (XTX)—IXTy
- Returns a vector of the optimal parameters

Linear Regression Results

linreg <- train(quality ~ ., data = winetrain, method = "1Im")
linreg

Linear Regression

#

1281 samples
11 predictor

Mo pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1281, 1281, 1281, 1281, 1281, 1281,

Resampling results:

RMSE Rsquared MAE
B.8528565 ©.2383112 0©.5882964

FHEEEREEREES

Tuning parameter '"intercept’ was held constant at a value of TRUE

linregpred <- predict(linreg, newdata = winetest)
R2(1linregpred, winetest$quality)

#4 [1] ©.2112612
RMSE(linregpred, winetest$quality)

[1] 0.87B2964

Lasso Regression

m Least Absolute Shrinkage and Selection Operator

m |Imposes a penalty on the model parameters
— It both shrinks the regression parameters, and sets some to zero
— This shrinking usually reduces the degree of overfitting

m This achieves both regularization and variable selection

m SSE = Y1 (yi— ¥)*+ AXi_.|B)]
- Where A is the shrinking parameter

Lasso Regression Results

-
lasso’

lasso <- train(gquality ~ ., data = winetrain, method =
lasso

The lasso

1281 samples
11 predictor

No pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1281, 1281, 1281, 1281, 1281, 1281, ...

Resampling results across tuning parameters:

fraction RMSE Rsguared MAE

8.1 0.8558870 ©.1728793 0.6343735
8.5 0.7543567 ©.2581568 0.5191828
0.9 0.7418589 ©.2639738 0.49896081

RMSE was used to select the optimal model using the smallest wvalue.
The final value used for the model was fraction = 8.9.

i e g e g g g g g e g e

lassopred <- predict(lasso, newdata = winetest)
R2(lassopred, winetest$quality)

#4 [1] 0.235743
RMSE(lassopred, winetest$quality)
[1] ©.76p9115

Multivariate Adaptive Regression Spline

m Creates a piecewise linear model
— This can identify nonlinearaties in the predictors

m Each variable is broken into two at a “hinge”

x, x>0

- Hinge function: h(x) = {0 <0

m This allows to estimates different slopes at different levels of predictors

MARS Result

earth <- train{as.numeric(quality)~ . , data = winetrain, method = "earth")
arth

Multivariate Adaptive Regression 5pline

1281 samples
11 predictor

Mo pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1281, 1281, 1281, 1281, 1281, 1281, ...

Resampling results across tuning parameters:

nprune RM5E Rsquared MAE

2 B.7131664 ©.2854139 @.5677883
9 B.6674768 ©.3214689 ©@.5188443
17 B.6787601 ©.3157428 @.5189675

Tuning parameter 'degree’ was held constant at a value of 1
RM5E was used to select the optimal model using the smallest wvalue.
The final walues used for the model were nprune = 9 and degree = 1.

FEEEESREE R

earthpred <- predict(earth, newdata = winetest)
RMSE(earthpred, winetest$quality)

[1] ©.6528861
R2(earthpred, winetestfquality)

i y
[1,] 0.3716706

K-Nearest Neighbors

m Among the machine learning algorithm

m Predicts the value of a new sample using the k nearest neighbors
- User specifies Kk, or tries several values

m Does not lend itself to a clear model specification, but is built upon the surrounding
data points

m The predicted value becomes the mean of those k neighbors

KNN Results

kaa <- train(quality ~ ., data = winetrain, tunelength = 15, method = "knn')
knn

k-Nearest Neighbors

1281 samples
11 predictor

Mo pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1281, 1281, 1281, 1281, 1281, 1281, ...

Resampling results across tuning parameters:

k RMSE Rsquared MAE

5 ©.7968283 ©.1385966 ©.6834272
7 8.7786717 ©.1315245 ©.5995870
9 9.7689441 @.1385925 0.5972475
11 @.76859321 @.1265367 ©.5967818
13 8.7632057 ©.1247815 ©.5952672
15 ©.7624019 ©.1284451 ©.5949367
17 @9.7596138 ©.1214243 ©.5941398
19 @.75968425 @.1201826 ©.5929951
21 @.7580978 ©8.1186734 ©.5936998
23 9.7580342 ©.1181368 ©.5931863
25 @.7569988 ©.118B6653 ©.5933399
27 89.7564548 ©8.1182458 ©.5933587
29 9.7561183 @.1175853 ©.5938933
31 @.7567026 ©.1155282 ©.5945899
33 @.7563577 8.1153775 ©.5949918

i e g g g e g g i g i g i i g g g g g g O

RMSE was used to select the optimal model using the smallest value.
The Tinal wvalue used for the model was k = 29.

KNN Results

kaa <- train(quality ~ ., data = winetrain, tunelength = 15, method = "knn')
knn

k-Nearest Neighbors

4

1281 samples

11 predictor knnpred <- predict(knn, newdata = winetest)
Lk RMSE(knnpred, winetesthquality)
i## No pre-processing

Resampling: Bootstrapped (25 reps) ## [1] 0.782951

Summary of sample sizes: 1281, 1281, 1281, 1281, 1281, 1281, ...

Resampling results across tuning parameters: R2(knnpred, winetest$quality)
it

k RMSE Rsquared MAE # [1] 0.1021323

#HE 5 ©.7968283 ©.1385966 ©.6834272 -0 a o =g - s e A .
#HE 7 8.7788717 ©.1315245 8.599%870

#HE 9 8.7e89441 ©.1385925 6.5972475

11 ©.7859321 ©.1265367 ©.59678180

13 @.7832857 ©.1247015 ©.5952672

15 ©@.7624819 ©.1204451 ©.5949367

17 ©.7596138 ©.1214243 ©.5941398

19 ©.7598425 ©.1201026 ©.5929951

21 ©.758e979 ©.1186734 ©.5936998

23 ©.7580342 ©.1181360 ©.5931863

25 ©.7509988 ©.1186653 ©.5933399

27 ©.7584548 ©.1182458 ©.5933587

29 @.7561183 ©.1175893 ©.5938933

31 @.7567826 ©.1155202 ©.5945899

#0033 9.75e3577 ©.1153775 ©8.594991a

#HE

RMSE was used to select the optimal model using the smallest value.

The final wvalue used for the model was k = 29.

Regression Tree

m Prediction is included with this model as a series of nested if-then statements

m If: x1<20 theny=5.3
- ElseIf: x2 >50theny=7.6
- Elsey=12.6

m We can differ how many potential branches we have
m Trees will find the optimum branches and cutoffs to predicty

m Single trees are VERY prone to overfitting

Regression Tree Results

Library(rpart)

tree <- rpart(quality ~ ., data = winetrain)
tree

n= 1281

##

node), split, n, deviance, yval

* denotes terminal node

1) root 1281 826.47930 5.636222
2) alcohol< 18.525 781 336.85890 5.370038
4) sulphates< ©.575 318 187.49690 5.163522 *
5) sulphates>=@.575 463 285.68470 5.511879
18) volatile.acidity>=0.4175 332 125.9157@ 5.4@3614 =
11) volatile.acidity< ©.4175 131 66.81527 5.786260
22) sulphates< ©.675 55 15.74545 5.498989 *
23) sulphates»=0.675 76 42.00000 6.000000 *
3) alcohol»=18.525 588 348.64800 6.052000
6) sulphates< ©0.645 225 155.79560 5.715556
12) volatile.acidity»=1.815 9 6.00000 4.000000 *
13) wvolatile.acidity< 1.815 216 122.20370 5.787037
26) alcohole 11.45 114 54.35965 5.535888 *
27) alcohol»=11.45 182 52.51961 6.068627 *
7) sulphates»>=8.645 275 146.54550 6.327273
14) alcohol< 11.55 164 87.77439 6.140244
28) volatile.acidity»=0.395 87 31.68920 5.873563 *
29) volatile.acidity< ©.395 77 42.98701 6.441558
58) pH»=3.255 46 21.21739 6.130435 *
59) pH¢ 3.255 31 16.70968 6.903226 *
15) alcohol»=11.55 111 44.55856 6.603684 *

—_——-d ———— A _afa._ e R S S T Y

- g g g g g g g g o g o o g o g o g g o g o

treepred <- predict(tree, newdata

RMSE(treepred, winetest$quality)
[1] 0.6619079

R2(treepred, winetest$quality)

[1] ©.3547117

winetest)

volatile acidity

= 0.36 <0.36

total sulfur dioxide

<41

volatile acidity
<165 =165 =>0.655 <0655
>0.185 <0.185 <965 =065

<0.096 =0.096

>/0998 20,008 o <745 >745

?3_44 23<14
Node 4 (n=8) Node 7 (n=12] Node 8 (n = 23] Node 11 (n=13 MNode 12 (n =8 Node 13 (n=8 Node 15 (n=17 Node 18 (n=9 Node 19(n=12 Node20 (n=9 Node 21(n=13)
7 7 7 7 7 7 7 7 7 7 7 7 77 [7 ¢° [
65 65 65 65 65 65 65 65 65— | 65 65— |

6 - 6 - 6 -° 6 - 6 - 6 - 6 - 6 -° 6 - 6 — 6 -

55 55 - 55 55 - 55 - B 55 H 55 55 - 55 D 55 - 55 D
5 - 5 - 5 — 54 — 5 - 5 - 5 — 5 — 5 - 5 - 5 -

45 D 45 - D 45 45 - 45 - 45 45 45 - 45
4 44 - 4 4 44 - 4 4 ° 44 o 4 4 4

|
o~
(]
|
o~
(]
|

Bagging

m Bootstrap AGGregating

m Designed to reduce variance in estimates and avoid overfitting the data
m A model averaging approach

m Take m data sets with resampling from the original data

m Perform a regression tree on each bootstrapped data set

m Average the results for regression trees

Random Forests

m Bootstrapped samples may feature different observations, but have the same
variables included

m This introduces “tree correlation” among the samples

m Random forests use bootstrapping, but also random selection of predictors
- This eliminates correlation across different samples

m While decision trees are easily interpreted, random forests are not

Random Forest Results

Forest <- train{as.numeric{quality)~ . , data = winetrain, method = 'rf")
forest

Random Forest

H#H#

1281 samples
11 predictor

Mo pre-processing
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 1281, 1251, 1281, 1281, 1281, 1281, ...

Resampling results across tuning parameters:

mtry RMSE Rsquared MAE

2 0.6055493 ©0.4411636 ©.4588852
6 0.6065994 ©.4336613 @.447e518
11 9.6139883 0.4201776 ©6.4499841

RMS5E was used to select the optimal model uwsing the smallest wvalue.
The final walue used for the model was mtry = 2.

i g g g g e g g g

forestpred <- predict(forest, newdata = winetest)
RMSE(forestpred, winetestfquality)

[1] ©.5757686
R2(forestpred, winetestiquality)

[1] ©.5273906

Summary of Regression Results

Model R? RMSE
Linear model 211 878
LASSO 235 770
MARS 371 .653
KNN 102 783
Regression tree 354 .662

Random Forest H27 B7H

Most Important Predictors

EHPIME(fﬂPEEt}
Owverall
tixed.acidity 35.92768
volatile.acidity HE. 32300
citric.acid 33.68082
residual.sugar 23.39bbb
chlorides 36.97330

free.sulfur.dioxide 32.22192
total.sulfur.dioxide 49.86415

1 g

density 41.97915
pH 36.15177
sulphates b3.83928
alcohol 7b.bbl2s

Classification Tasks

m Logistic Regression

m Naive Bayes

m KNN

m Linear Discriminant Analysis
m Support Vector Machines

m Decision Trees

m Random Forests

German Credit Data

m From UCI Machine Learning Repository
m 1000 observations of 62 variables

m Prediction is whether a person has good or bad credit

German Credit Data

tallmentRatePercentage | ResidenceDuration

4
2

4
2

L

Age NumberExistingCredits NumberPeopleMaintenance Telephone ForeignWorker

67
22
49
45
53
35
53
35
61
28
25
24
22
60
28

2
1

1
1

0
1

1
1

Class
Cood
Bad
Cood
Cood
Bad
Cood
Cood
Cood
Cood
Bad
Bad
Bad
Cood
Bad

Cood

Measuring Performance in
Classification

m Accuracy is a measure of how many predictions were right, versus the total dataset
— Many problems with this metric

Number of correct Yes's
Number of Yes's

m Sensitivity =

Number of correct No's
Number of No's

m Specificity =

m [radeoff between Sensitivity and Specificity

Area under ROC Curve

Specificity

Logistic Regression

m Same basic concept as linear regression
m Form a model that is linear in the parameters by minimizing residuals
m Model the log odds of an event occurring

- log (1%9) = Bo + Bix1 + Boxz .. Prxy

— Where p is the probability of the event occurring

m Similar to linear regression, this often used as our baseline model

Logistic Regression Results

logistic <- glm(Class ~ ., data = CreditTrain, family = 'binomial")
logistic

##

Call: glm(formula = Class ~ ., family = "binomial”, data = CreditTrain)
i

##

Degrees of Freedom: 749 Total (i.e. Null); 786 Residual

Null Deviance: 916.3

Residual Deviance: 641.5 AIC: 725.5

credpred <- predict(logistic, newdata = CreditTest, type = ‘response’)
knc{hezpﬁnﬁe = CreditTest$Class, predictor = credpred)

#

Call:

roc.default(response = CreditTest$Class, predictor = credpred)
H#H

Data: credpred in 75 controls (CreditTest$Class Bad) < 175 cases
(CreditTest$Class Good).

Area under the curve: 8.7255

Nalve Bayes

m Uses Baye’s theorem to establish probability of outcome based in prior evidence

p(Event)*p(x |Event)
p(x)

m p(Event|x) =

m T[rain the parameters of this equation on the test set, apply to the training data

m Considering the simplicity of this model, does surprisingly well

Nalve Bayes Results

naive <- train(Class ~ ., data =CreditTrain, preProc = c('center’, 'scale'),
method = 'naive_bayes’|)

naive naivepred <- predict(naive, newdata = CreditTest, type = "prob’)

Naive Bayes roc(response = CreditTest$Class, predictor = naivepred$Bad)

i
758 samples .
49 predictor ## Call:

5 dlorezrs BrtF, Eook ## roc.default(response = CreditTest%Class, predictor = naivepred$Bad)

i

Data: naivepredfBad in 75 controls (CreditTest$Class Bad) » 175 cases
(CreditTest$Class Good).

Area under the curve: 8.6957

Pre-processing: centered (49), scaled (49)

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 758, 758, 758, 758, 758, 75@,
Resampling results across tuning parameters:

usekernel Accuracy Kappa
FALSE B.7112586 ©.363746290
TRUE B.6968461 ©.681733411

Tuning parameter 'laplace’ was held constant at a value of 8

Tuning parameter 'adjust’' was held constant at a value of 1

Accuracy was used to select the optimal model using the largest wvalue.

The final walues used for the model were laplace = @, usekernel =
FALSE and adjust = 1.

g g g g o g g e g g g g g g o g

KNN

m Thesame idea of KNN for regression can be used for classification
m Foranewsample, use the label associated with nearest k neighbors
m Unlikely that all neighbors agree, so voting is typically used among k neighbors

m Thisis a simple model, but easily interpretable

KNN Results

kﬂﬂ <- train{Class ~ ., data = CreditTrain, preProc = c('center’, ‘scale’),
method = "knn’, tunelength = 18)

k-Nearest Neighbors

758 samples
49 predictor
2 classes: 'Bad', 'Good’

knnpred <- predict(knn, newdata = CreditTest, type = "prob")
roc(response = CreditTest$Class, predictor = knnpred%Bad)

it
Pre-processing: centered (49), scaled (49) ## Call:
Resampling: Bootstrapped (25 reps) ## roc.default(response = CreditTest$Class, predictor = knnpred$Bad)
Summary of sample sizes: 758, 758, 758, 758, 758, 758, ... #

Data: knnpredfBad in 75 controls (CreditTest$Class Bad) > 175 cases
(CreditTest$Class Good).
Area under the curve: 8.7382

Resampling results across tuning parameters:

k. Accuracy Kappa

5 ©.b6878687 0.2149655
7 ©.7828838 ©.2328485
9 ©8.7871438 ©.2382960
11 ©.7896588 ©.2276259
13 ©8.7175363 ©.2402718
15 8.7194484 ©.2365887
17 ©9.7252919 0.2467146
19 ©.7248848 ©.2408836
21 89.7276833 0.2412381
23 ©9.7266859 ©.2355854

g g g gh g b g e e

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was k = 21.

Linear Discriminant Analysis

m Attempts to find a linear combination of the predictors that will best distinguish
classes

m Often used as a dimensionality reduction technique as well

m Among the oldest classification technique

ggg <- train(Class ~ ., data = CreditTrain, preProc
method = "1da2’, tunelength = 1@)

ldapred <- predict(lda, newdata = CreditTest, type

1da

g g g g g g g e g O g g g =

LDA Results

Linear Discriminant Analysis

758 samples
45 predictor
2 classes: "Bad', 'Good’

Pre-processing: centered (49), scaled (49)
Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 758, 758, 758, 758, 758, 75@,

Resampling results:

Accuracy Kappa
8.7419848 ©.353103

Tuning parameter ‘dimen’ was held constant at a value of 1

= . -

"prob’)

e

c('center’, 'scale’

)5

roc(response = CreditTest$Class, predictor = ldapred%Bad)

##

Call:

roc.default(response
##

Data: ldapred$Bad in

(CreditTest$Class Good).
Area under the curve:

= CreditTest$Class, predictor = ldapred$Bad)
75 controls (CreditTest$Class Bad) » 175 cases

B.7268

Support Vector Machines

m Assume that we have two classes, assessed on a single X variable

m SVMs find the line the best distinguishes the two classes, with margins as large as
possible

m SVMs can classify observations, but cannot deliver probabilities

m One tuning parameter is how strict are the boundaries when classes are not linearly
separable

SVM Results

svm <- train(Class ~ ., data =CreditTrain, preProc = ¢('center’, 'scal
method = 'svmRadial")
credpred <- predict(logistic, newdata = CreditTest, type = 'response’)

Evmghed <- predict(svm, newdata = CreditTest, type = "raw’)
confusionMatrix(svmpred, CreditTest$Class)

Confusion Matrix and Statistics

i

Reference
Prediction Bad Good
Bad 28 12

Good 47 163

Accuracy : 8.764
95% CI : (©.7064, ©.8152)
No Information Rate : 8.7
P-Value [Acc > NIR] : ©.81474

Kappa : 8.3516

Mcnemar's Test P-Value : 9.581e-86
Sensitivity : B.3733
Specificity : 8.9314
Pos Pred Value : 6.70680
Neg Pred Value : B.7762
Prevalence : ©.3888
Detection Rate : 8.1128
Detection Prevalence : 8.1668
Balanced Accuracy : 8.6524

FEEFEEEEEEEF

*Positive' Class : Bad

Classification Tree

m Same basic logic as the regression tree, but for classification

m Good trees are classified by “purity”
- i.e. Proportions are close to zero or one for a node

m Variables will be split on the variable that maximizes the purity
- Will then choose other variables to split on

- Will continue until maximum depth is reached, sample size in each node
reaches a minimum

m Also very prone to overfitting
- Trimming usually helps this

Decision Tree Results

bgag& <- train(Class ~ ., data = CreditTrain, preProc = e('center’, 'scale'},

method = 'rpart2’, tunelength = 18)
rpart
CART . . ,
4 treepred <- predict(rpart, newdata = CreditTest, type = 'prob’)
750 samples roc(response = CreditTest$Class, predictor = treepred%Bad)
49 predictor 4
2 classes: 'Bad’, 'Good’ ## Call:
ﬁ: Pre-processing: centered (49), scaled (49) :: roc.default({response = CreditTest%Class, predictor = treepredfBad)
nay Eel gLl BDDtStP?pPEd (25 reps) ## Data: treepredfBad in 75 controls (CreditTest$Class Bad) < 175 cases
Summary of sample sizes: 758, 758, 758, 758, 75@, 7509, ... (CreditTest$Class Good).
Resampling results across tuning parameters: ## Area under the curve: @.3494
H
maxdepth Accuracy Kappa
Ht 2 8.7139595 @.2212883
#Ht 3 B.7856917 @.2345376
it 7 8.708@855 @.2534540
HE 3 B.78706%3 ©.2543217
#H 12 @.7814758 @.2414844
#t 15 @.7885167 @.2442806
#H 17 B.6975333 @.2379228
#H 21 B.6966232 @.2485164
#H 24 B.6962002 @.2483841
#H 30 8.6962002 ©.2483841
Ht

Accuracy was used to select the optimal model using the largest value.
The final value used for the model was maxdepth = 2.

Random Forest

m Require a simple modification of Random Forest Regression algorithm

m Each decision tree votes for the classification in a new sample
— This is how we calculate the probabilities

m Each constituent tree uses a random subset of variables

m Typically avoids some of the overfitting for individual decision trees

Random Forest Results

rf <- train(Class ~ ., data = CreditTrain, preProc = c('center’, "scale’),
method = 'rf', tunelength = 18)

rfpred <- predict(rf, newdata = CreditTest, type = "prob')

of

Random Forest

FHt

750 samples roc(response = CreditTest$Class, predictor = rfpred$Bad)
#H# 49 predictor

2 classes: 'Bad', 'Good'

s ## Call:

Pre-processing: centered (49), scaled (49) ## roc.default(response = CreditTest%Class, predictor = rfpred$Bad)
Resampling: Bootstrapped (25 reps) #H#

Summary of sample sizes: 758, 758, 750, 750, 7508, 758, ... ## Data: rfpred$Bad in 75 controls (CreditTest$Class Bad) » 175 cases
Resampling results across tuning parameters: (CreditTest$Class Good).

Area under the curve: 0.7781

#H mtry Accuracy Kappa

it 2 8.7253583 ©8.1678937

FHt 7 8.7488568 ©8.3242874

#0012 @.7459167 ©8.3257745

#H17 8.7421611 ©8.3247984

22 ©.7408988 ©.3268828

28 0©.7397046 ©.3261598

#H 33 8.7378156 ©8.3288173

#H 38 8.7381571 ©8.3282542

#HO43 8.73d6664 8.3226177

#0049 @.7342829 ©8.3226838

it

Accuracy was used to select the optimal model using the largest wvalue.
The final value used for the model was mtry = 7.

Summary of Classification Results

Model AUC
Logistic Regression 725
Naive Bayes .695
K-Nearest Neighbors 738
Linear Discriminant A27
Analysis

Support Vector Machine N/A
Decision tree 342

Random Forest 770

Sensitivity

04

1.0

0.8

0.6

0.2

0.0

|
1.2

|
1.0

|
0.8

| |
06 04

Specificity

|
0.2

Most Important Predictors

varImp rf
I-\.-\.-\.

rf variable importance

only 20 most important variables shown (out of 47)

overall
Amount 100. 000
Age 71. 508
Duration 67.658
CheckingAccountstatus. none 4B8.718
Checkingaccountstatus. 1t.0 29.163
ResidenceDuration 25.552
Instal ImentRatePercentage 25.517
savingsAccountBonds. 1t.100 16. 810
CreditHistory.critical .468
Checkingaccountstatus. 0. to. 200 .055
Purpose. NewCar . B24
NumberExistingCredits . 657
otherInstallmentPlans. None . 3486
Job. skilledemployee .742
Personal.male.single .485
Property.RealEstate . 344
Telephone .111
Property. INSUrance . 658
EmploymentDuration.l.to.4 .223
SavingsAccountBonds. Unknown .174

Deep Learning

m Characterized by a “black box”
— Subset of machine learning
— Able to train itself

m Appropriate for more complicated tasks, like image or sound recognition
m Algorithms are typically less organized, more flexible, and way more complicated

m The most popular methods are variations on artificial neural networks
— Inspired by the biology of human neural networks

Change Alt Text

The automatically generated alternative text for this photo is:

e~ pc0ple, people standing_=>

Add alternative text that describes the contents of the photo for
people with visual impairments

Override generated alt text

Single Layer Perceptron

(
W, 1 if ZW ght
output = <
W, 0, iLf ZW ght
\
" (oo,
W,

Multilayer Perceptron

What is the point of the hidden layer(s)?

m Raw input is usually not able to be weighted in a way that can be used for the output
m Transform the input into something the output layer can use
m Output layer will then scale the hidden inputs into the example classes used

m This allows for multiple functions to be applied to input
- Forinstance, allows the network to pick up on different features of the input

Convolutional Neural Networks

m [ype of multilayer perceptron that utilizes convolutional layers
— Particularly useful for image recognition

m Convolutional layers narrow the input down to a subset of input (like pixels in a
picture), trained through optimization

m This subset is “pooled” together, and then multiple other pooled layers are
combined

m Multilayer perceptron (or further convolution) is then applied to these pooled layers

MNIST Dataset

m The ‘Hello World!" of machine learning datasets
m Images are handwritten digits that take on values of 0-9

m Each images is 28x28 pixels
- Each image is 784 dimensional, with a vector representing the value

m Numeric values are represented by pixel darkness

m Consists of 60,000 training images and 10,000 test images

Va2
0.000000000
IVI N I 0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

- The ¢ 0.000000000
0.000000000

B Imag; 400000000

0000000000

m Each
0000000000
0000000000

u Num'D.DDDDDDDDD
Q.000000000

m Cons 0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.003921569

Va3

Q.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.09803022

Vodq

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
Q.o00o00o
Q.ogooooo
Q.o00o00o
Q.ogooooo
Q.o00o00o
Q.ogooooo
Q.o00o00o
Q.ogooooo
Q.o00o00o
Q.ogooooo
Q.o00o00o
0.5098040

Va5

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.5085040

Vo

Q.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
036075432
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.50980395

vay

0.0000000
0.0000000
06313726
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
.o000000
0.84705%89
.o000000
0.0000000
.o000000
0.0000000
.o000000
0.0000000
.o000000
0.0000000
.o000000
0.8705883

Vas

Q.0000000
0.0000000
09137256
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
Q.ogooooo
0.89921569
Q.ogooooo
QLogooooo
Q.ogooooo
QLogooooo
Q.ogooooo
QLogooooo
Q.ogooooo
QLogooooo
Q.ogooooo
1.0000000

Va9

Q.0o000000
0.00000000
0.62352043
0.0o0000000
0.0o0000000
0.0o0000000
0.0o0000000
0.00000000
0.00000000
0.00000000
060000002
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000
1.00000000

V100

0.0000000
0.0000000
0.9058524
0.0000000
0.0000000
0.0000000
00000000
0.0000000
00000000
0.0000000
0.2470588
0.0000000
0.o000000
0.0000000
0.o000000
0.0000000
0.o000000
0.0000000
0.o000000
0.0000000
1.0000000

What is Tensorflow?

m Developed by the Google Brain team for internal use
- Including the “Godfather of Al” Geoffrey Hinton

m Replaced their DistBelief that was used for training neural networks
m Was issued as an open sourced library in 2015

m Python APl is the most widely used, but interfaces with R (through Python)

Training a Simple Neural Network

m We have to initialize a TensorFlow ‘session’

m Load in the data

m Create placeholders for the data

m Create batches that help the normalization of the data
m T[rain the network using Gradient Descent

m Assess accuracy

library (tensorflow)
install tensorflow()

$% Using r-tensorflow conda enviromment for TensorFlow installation
7
#% Instzllation complete.

sess = tffSession ()
hello <- tfSconstant('Hello, TensorFlow!')
sessfrun (hello)

#%# b'Hello, TensorFlow!®

tflow <— import ("tensorflow™)

datasets <- tfScontribflearnfdatasets

mnist <- datasetsﬂmnistﬂread_data_setsi“HH:EI—data”, one hot = TRUE)
mnist

#%# Datasetsz(train=<tensorflow.contrib.learn.python.learn.datasets.mnizt.DatalSet>, wvalidation=<tenzorflow.contri
b.learn.python.learn.datasets.mnist.DataSet>», test=<tensorflow.contrib.learn.python.learn.datasets.mnisc.DatasSe
T>)

mnistStrainSimages[1,]

3
3

[1]
[7]

0.00000000
0.00000000

0.00000000
0.00000000

0.00000000
0.00000000

0.00000000
O.00000000

0.00000000
O.00000000

0.00000000
0.00000000

#% [13] 0.00000000C 0.00000000 0.00000000 0.00000000 0.00000000 0,00000000
#% [19] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [25] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
$4 1211 A AOAAAANN O AAOOAOAAN 0 AOAAAONO 0 AOOOOOA6 0 0006000 0 G000606ann

#% [e55] 0.00000000 ©.00000000 Q.0C0000000 0Q,00000000 0.00000000 0.00000000
#% [661] 0.949019%67 0.9960734% 0.93725497 0.223529%43 0.00000000 0.00000000
#% [&€7] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [&73] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [&7%] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [685] 0.00000000 0.00000000 O.00000000 0.34501962 0.98431379 0.94509810
#% [691] 0.33725491 0.00000000 0.00000000 ©.00000000 0.00000000 0.00000000
#% [697] 0.00000000 0.00000000 0.00000000 O.00000000 0.00000000 0.00000000
#% [703] 0.00000000 0.00000000 0.00000000 O.00000000 0.00000000 0.00000000
#% [70%9] 0.00000000 0.00000000 O.00000000 O.00000000 0.00000000 0.00000000
#% [715] 0.01960784 0.80784321 0.96470594 0.61568630 0.00000000 0.00000000
#% [721] 0.00000000 0.00000000 O.00000000 O.00000000 0.00000000 0.00000000
#% [727] 0.00000000 0.00000000 0.00000000 O.00000000 0.00000000 0.00000000
#% [733] 0.00000000 0.00000000 0.00000000 O.00000000 0.00000000 0.00000000
#% [73%] 0.00000000 0.00000000 0.00000000 0.00000000 0.01568628 0.

#% [745] 0.27058825 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [751] 0.00000000 ©0.00000000 0.00000000 O.00000000 0.00000000 0.00000000
#% [757] 0.00000000 ©0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [763] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [76%] 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [775] 0.00000000 ©0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
#% [781] 0.00000000 0.00000000 0.00000000 0.00000000

mnistSftrainflabels([l,]

0100

[11 000000

x <— tfSplaceholder (tf5float32, shape (WULL, T&4L))
W <— tfSVariable (tfSzeros (shape (784L, 10L)))

b <- tfSVariable (tfSzeros (shape (10L)))

v «— tffnnfsoftmax (tfimatmul (x, W) + b)

¥ _<- tffplaceholder(tfffloat32, shape (NULL, 10L})

CIoss_entropy <- tfﬂredace_meani—tfﬂredace_samiy_ * ¢cfElog(y), reduction_indices=l1L))
optimizer <- tfftrainfGradientDescentOptimizer (0.5)
train step <- Dptimizerﬂminimize(cruss_entrnpy]
init <- tfﬂglnhal_?ariahles_initializeri]
ges33 <— tffSession()
sessSrun (init)
for (i in 1:1000) {

batches <- mnistf{trainf$next batch (100L)

batch xs <- batches[[1]]

batch wys <- batches[[Z]]

sessﬂran(train_step,

feed dict = dict(x = batch xs, v = batch ys))

correct prediction <- tf$equal (tffargmax(y, 1lL), tffargmax(y , 1L})
accuracy <— tffreduce mean(tffcast(correct prediction, tf$float32))
seas$run (accuracy, feed dict=dict(x = mnistftestfimages, ¥ = mnist$test$labels))

#% [1] 0.8176

Training a Convolutional Neural Network

m Same steps as before except...

m Set up convolutional and pooling layers
- Our example will include two layers of 32 and 64
— Pooling layers are 2x2 dimensions

x <— tffplaceholder (tfffloat32, shape (NUOLL, T754L))
¥y _ <- tffplaceholder(tf$float32, shape (NULL, 10L}))
W <- tftVariable (tffzeros (shape (784L, 10L)))

b <- tftVariable (tffzeros (shape (10L)))
sessjrun(tfiglobal variables initializer())

vy <— tfinnfsoftmax (cfimatmul (x,W) + b)

¥
#% Tensor ("Softmax:0", shape=(7?, 1l0), dtype=float3Z)

Cross entropy <-— tf$reduce_meani—tf$reduce_sumiy_ * tfSlog(vy), reduction indices=l1L))
optimizer <- tfftrainfGradientDescentOptimizer (0.5)
train step <- Dptimizerﬂminimizeicruss_entrupyj

-

for (i in 1:1000 {
batches <- mnist$train$next batch (100L
batch x3 <- batches[[1]]
batch ys <- batches[[Z]]
sessfrun (train step,

feed dict = dict(x = batch x3, ¥y = batch y3))

correct prediction <- tffequal (tffargmax(v, 1L}, tffargmax(y , 1L))
accuracy <- tf$reduce mean(tffcast (correct prediction, tf$float3z))
accuracy$eval (feed dict=dict(x = mnistitestfimages, v = mnistitestilabels))

weight wariable <- fuonction(shape) {
initial <- tfﬂtrancated_nnrmal(shape, stddev=0.1)
tffVariable (initial)

bias wariable <- function(shape) {
initial <- tffconstant(0.l, shape=shape)
tffVariable (initial)

convZd <— fonctionm(x, W) {
tfénnSconv2d (x, W, strides=c(l1L, 1L, 1L, 1L}, padding='5aME')
max pool ZIx3 <- fonction(x) {

tfinnimax pool |
Xy
kzize=c(lL, 2L, 2L, 1L},
strides=c (1L, 2L, 2L, 1L},
padding="5SaAME ")

W convl <- weight wariable (shape (5L, 5L, 1L, 3ZL))

b convl <- bias variable(shape(3ZL))

X ilmage <- tfSreshape (x, shape(-1L, Z8L, Z8L, 1L))

h convl <- tfﬁnnﬂrelaicnnvEdix_imagE, W convl) + b convl)
h pooll <- max pool ZxZ(h convl)

W convl <- weight wariable (shape = shape(sSL, 5L, 3ZL, &4L})
b conve <- bias variable (shape = shape (&4L))

h convZz <- tffnnSrelu(convZd{(h pooll, W convZ) + b convz)
h poold <- max pool Zx2(h convi)

W fcl <- weight wvariable(shape (7L * 7L * &4L, 1024L))
b fcl <- bias wvariable (shape (1024L))
h pool2 flat <- tfﬂreshapeih_pDDlE, shape (-1L, 7L * TL * &4L))

h fcl <- tffnnSrelu(tffmatmul (h pool2 flat, W _fcl) + b fcl)
keep prob <- tfSplaceholder (tf$float32)

h fcl drop <- tffnnidropout (h fcl, keep prob)

W fcl <- weight wvariable(shape (1024L, 10L))

b fcl <- bias wvariable (shape (10L}))

vy conv <- tfSmn$softmax(cfimatmul (h fcl drop, W fc2) + b fc2)

CIroSs_entropy <- tfﬂredace_meani—tfﬂredace_samiy_ o tfﬂlugiy_cunvj, reduction_ indices=l1L})
train step <- tfftrainfAdamOptimizer(le-4)Sminimize (cross entropy)
correct prediction <- tffequal (tffargmax(y conv, 1L}, tffargmax({y , 1L})
accuracy <- tf$reduce mean(tffcast (correct prediction, tf$float32))
sessfrun (tf$global variables initializer())
for (i in 1:20000) {
batch <- mnistftrainfnext batch (50L)
if (i %% 100 = 0) {
train_ accuracy <- accaracyﬂevalifeed_dict = dict {
1.0))

cat (sprintf ("step %d, training accuracy *g\n", i, train_ accuracy))

x = batch[[1]], ¥_ = batch[[2]], keep prob =

train_stepﬂranifeed_dict = dict {

ol =]::E.'.t-c-'1[[—]]lf :"'r_

= batch[[2]], keep prob = 0.5})

##%# step 100, training accuracy 0.76
#%# step 200, training accuracy 0.%94
##%# step 300, training accuracy 0.%96
#%# step 400, training accuracy 0.%92
r
##% step 500, training accuracy 0.54
##% step 600, training accuracy 0.56
#% step 700, training accuracy 0.54
step 800, training accuracy .54
##% step 900, training accuracy .54

TWO AND A HALF
HOURS LATER...

(During which | went to the grocery store, did laundry,
and made dinner)

test accuracy <- accuracyseval (feed dict = dict|
X = mnistStestiimages, ¥y = mnistitestilabels, keep prob = 1.0))
cat (sprintf ("test accuracy %g", test accuracy))

L .- . - O
FF Lest dCCUracy U.=3310

Other Neural Networks

m Recurrent neural networks
- Used for time series data

m Deep belief networks
- Unsupervised neural nets

m Longshort-term memory
- Maintains “memory” of values

m Reinforcement Learning
- Allows the machine to learn over time

Caveats about Neural Networks

m The computational time is crazy
m Have failed to meet high expectations

m Pretty much no interpretability

