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What is Regression Good For?

• Assessing relationships between 
variables 
 This probably covers most of what 

you do

 Example:

 What is the relationship between 
intelligence and GPA?

 Intelligence is the independent 
variable, which we will call X

 GPA is the dependent variable, which 
we will call Y
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What is Regression?

• Predicts an outcome (Y) from 1+ predictors (Xs)

• Fitting a line to data
 Y = mx + b + error

 Y = intercept + slope*X + error

• Y = b0 + b1X1 + … + b2X2 + e

• Y is one column of data

• Each X is a column of data

• bx is the coefficient/weight for that x 

• b0 is the intercept
 Prediction for Y when all Xs are 0

• e is error/residual
 What is left over after prediction

 Yactual-Ypredicted

 1 value for each case (row of data)
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• Y = b0 + b1X1 + b2X2 + e

• What would the best bs do?

• They would lead to predictions of Y that are closest to the actual Y values

• How close is one prediction from the actual value for that case (row in data)?

 The residual/error

 Yactual-Ypredicted

 Better bs will lead to smaller residuals/errors

• Proposed solution: Find bs that lead to the lowest average residuals/errors

• Problem:
 Average residual = 0

• Solution: Find bs that lead to lowest average squared residuals/errors
 Ordinary least squares (OLS) regression

• R finds the bs that minimize the squared residuals/errors using matrix algebra

How does R select the best bs?
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Assumptions

1. Homoscedasticity
 Variance of residuals does not change at levels of X

 When violated, bootstrap

2. Residuals/errors normally distributed
 Can use histogram or P-P / Q-Q plot

 When violated, bootstrap

3. Independence of residuals/errors
 When violated, we can use multilevel modeling

4. Linearity
 When violated, transform Xs to meet this assumption

• Xs can have any distribution 5



R and RStudio

• Script

• Console

• Environment

• Object assignment

• Plotting

• Packages

• Help

• Commenting

• Data frames

• Functions and arguments
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Load Data
• Usually will use

 dataname = read.csv(“filepath”)

• We will use a dataset in the corrgram package about 322 
Major League Baseball regular and substitute hitters in 
1986
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Some Data Transformations – Not 
Focus of this Workshop
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1 Continuous Predictor – Scatterplot 

• Y = b0 + b1X1 + e

• Scatterplot can be quite revealing

• Want to make sure the relationship looks linear

• Otherwise you will probably want to transform 
your predictor

 Later in workshop
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1 Continuous Predictor – Model 

• Estimate = b = regression coefficient

• Standard error = standard deviation of 
sampling distribution
 Provides confidence intervals

 Most affected by N (sample size)

• t = b / se

• t and df -> p
 df = N-k-1

 N = sample size

 k = number of predictors

• Multiple R2 = correlation of predicted 
and actual values squared
 p-value is p from F (lower right)

• Adjusted R2 adjusts R2 based on 
number of predictors

For each 1-unit increase in SeasonSalary, the 

expected SeasonBattingAvg increases by .000022 10



Standardized Coefficients

• What if all values were standardized before 
entering model?

• Z = (X – Mean) / SD

• βs can be interpreted like correlations

 -1 to 1

 Called standardized regression coefficients

For each 1 SD increase in SeasonSalary, 

SeasonBattingAvg increases by .33 SDs
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Multiple Continuous Predictors

• Coefficients are partial 
coefficients

 Contribution of that variable 
holding other variables 
constant

 Unique contribution of that 
variable over and above 
other variables

Y

X2X1
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Adding a Predictor

For each 1 unit increase in CareerYears, 

the expected SeasonBattingAvg increases 

by -.00099, holding other variables constant 13



Adding a Predictor
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Categorical Predictors: Dichotomous
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Categorical Predictors: 3+ Levels
• Dummy Coding

 1 2 3 4 5 6

 1B  1 0 0 0 0 0

 2B  0 1 0 0 0 0

 3B  0 0 1 0 0 0

 C    0 0 0 1 0 0

 DH 0 0 0 0 1 0

 OF  0 0 0 0 0 0

 SS   0 0 0 0 0 1

• Effects Coding
 1 2 3 4 5 6

 1B  1 0 0 0 0 0

 2B  0 1 0 0 0 0

 3B  0 0 1 0 0 0

 C    0 0 0 1 0 0

 DH 0 0 0 0 1 0

 OF -1-1-1-1-1-1

 SS  0 0 0 0 0 1

• Dummy Coding

 Pick a reference group

 Estimate that group’s level of Y as the intercept

 For all other groups, estimate how different their level of 
Y is, compared to the dummy group as the bs

 I usually prefer this over effects coding

• Effects Coding

 Estimate the grand mean (mean of all groups) as the 
intercept

 For all other groups (except 1), estimate how different 
their level of Y is, compared to the grand mean as the bs
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Categorical Predictors: 3+ Levels

17



Categorical Predictors: 3+ Levels
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Comparing to ANOVA

Between-Group Variability

Within-Group Variability 19



ANCOVA – Categorical and 
Continuous Predictors

Catchers have a batting average .010 lower 

than outfielders, holding other variables 

constant
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Non-linear Relationships
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Interactions

• Interaction = effect of X1 depends 
on level of X2

 If that is true, opposite is true too

• Y = b0 + b1X1 + b2X2 + b3X1X2

• Y = b0 + b1X1 + (b2 + b3X1)X2

 b3 = For each 1-unit increase in X 
how much does b2 increase

 And vice-versa

• Can have 3-way, 4-way, etc. 
interactions
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Interaction Plot
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Spline Regression 
– Making Data
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Spline Regression – Model 

bs are slopes before and after knot
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Count Outcome
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Count Outcome –
Negative Binomial 
Model
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Count Outcome – Negative Binomial Model

For each 1-unit increase in log(CareerYears), 

the expected log(CareerAtBats) increases by 

1.12 28
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– Zero-Inflated 
Model

For each 1-unit increase in SeasonSalary, 

the expected log(SeasonHits) increases by 

.0004

Use when many observations have a 0 on the Y
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Proportional Outcome – Beta Regression

For each 1-unit increase in SeasonSalary, the log odds 

of SeasonBatting Avg increases by .00011
Log odds = log(probability/1-probability)

Can do algebra to get probability at each X 
30



Quantile (Percentile) Regression
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Dichotomous Outcome – Logistic Regression
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For each 1-unit increase in 

SeasonBattingAvg, the log odds of being an 

outfielder increases by 65

odds ratio = 2 -> probability of .66
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Ordinal Outcome - Ordered Logistic 
Regression
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Ordinal Outcome - Ordered Logistic 
Regression
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Ordinal Outcome –
Ordered Logistic 
Regression
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Categorical Outcome – Multinomial 
Logistic Regression
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Categorical Outcome – Multinomial 
Logistic Regression
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Categorical Outcome
– Multinomial Logistic 
Regression
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Nested Data – Multilevel Modeling
• Assumption of regression: independence of residuals/errors

 When violated, we can use multilevel modeling

• Dependence of residuals/errors usually results from grouping/nesting in the 
measured DV

 Students nested in classrooms/teachers

 Observations nested within participants (i.e., repeated measures)

 Participants nested in countries

• Conceptually, it’s like running separate regression models for each 
classroom and then aggregating them

• Can have student-level and classroom-level predictors

• Can have more than 2 levels
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Multilevel Equations
• Example with level-1 and level-2 predictors:

 Level-1 Model: 

 Yij = β0j + β1jXij + rij

 Level-2 Model: 

 β0j = γ00 + γ01Wj + u0j

 β1j = γ10 + γ11Wj + u1j

 Combined Model: 

 Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + u0j + u1jXij + rij

• Var(rij) = σ2

• Var(u0j) = τ00

• Var(u1j) = τ11

• Cov(u0j, u1j) = τ01
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Nested Data – Multilevel Modeling

• Level-1 Model: 

 Salaryij = β0j + β1jSeasonHomeRunsij + rij

• Level-2 Model: 

 β0j = 313.9 + u0j

 β1j = 19.3 + u1j

• Var(rij) = σ2 = 150331.9

• Var(u0j) = τ00 = 1560.0

• Var(u1j) = τ11 = 168.7

• Cor(u0j, u1j) = -.71

Within teams, a 1-unit increase in 

SeasonHomeRuns the expected Salary 

increases by 19.3 units 41



Nested Data – Multilevel Modeling

42



Nested Data – Multilevel Modeling
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Nested Data – Multilevel Modeling
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Regularization
• To prevent overfitting, take parsimony into account

• Ridge (L2)

 Causes regression coefficients to shrink

• Lasso (L1)

 Causes some regression coefficients to become 0

• Elastic Net

 Hybrid of other 2
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Overfit Multiple Regression Model
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Multicollinearity
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Ridge Regression
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Ridge Regression
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Lasso Regression
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Elastic Net Regression
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Bootstrapping
• Two assumptions of regression:

1. Homoscedasticity

 Variance of residuals does not change at levels of X

2. Residuals/errors normally distributed

 Can use histogram or P-P / Q-Q plot

• Can solve each with bootstrapping

 Imagine a dataset with N rows

 Could sample rows with replacement N times

 Run model with that new dataset

 Record results

 Repeat 10,000 times

 Provides distribution of results with a mean and standard deviation/error
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Bootstrapping Three-Predictor Model
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Causal Claims
• Correctly specified model

 Regression coefficients can be interpreted as causal effects if model is “correctly 
specified”

 Other models still valid prediction models

 All causes of Y that are correlated with any Xs in the model are in the model

 Rare, except for…

• Random assignment

 Creates a correctly specified model

 If randomly assigned condition is a predictor, nothing is correlated to it (assuming 
large enough N)

 So model is correctly specified

 If add covariates, can still interpret effects of condition causally

 Must be able to manipulate IV

 If cannot, try to make model as “correct” as possible
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Future Directions

• Structural Equation Modeling (SEM)
 Path analysis

 Mediation

 Latent variables – model measurement error

• Factor Analysis

• Longitudinal data analysis
 Regressed change

 Predict t2 from t1 and other variables

 Difference scores
 Outcome is t2-t1

 MLM

 SEM
 Latent growth models

 Cross-lagged models

 Time series analyses

• Machine Learning
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