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What is Regression Good For?

• Assessing relationships between 
variables 
 This probably covers most of what 

you do

 Example:

 What is the relationship between 
intelligence and GPA?

 Intelligence is the independent 
variable, which we will call X

 GPA is the dependent variable, which 
we will call Y
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What is Regression?

• Predicts an outcome (Y) from 1+ predictors (Xs)

• Fitting a line to data
 Y = mx + b + error

 Y = intercept + slope*X + error

• Y = b0 + b1X1 + … + b2X2 + e

• Y is one column of data

• Each X is a column of data

• bx is the coefficient/weight for that x 

• b0 is the intercept
 Prediction for Y when all Xs are 0

• e is error/residual
 What is left over after prediction

 Yactual-Ypredicted

 1 value for each case (row of data)
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• Y = b0 + b1X1 + b2X2 + e

• What would the best bs do?

• They would lead to predictions of Y that are closest to the actual Y values

• How close is one prediction from the actual value for that case (row in data)?

 The residual/error

 Yactual-Ypredicted

 Better bs will lead to smaller residuals/errors

• Proposed solution: Find bs that lead to the lowest average residuals/errors

• Problem:
 Average residual = 0

• Solution: Find bs that lead to lowest average squared residuals/errors
 Ordinary least squares (OLS) regression

• R finds the bs that minimize the squared residuals/errors using matrix algebra

How does R select the best bs?
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Assumptions

1. Homoscedasticity
 Variance of residuals does not change at levels of X

 When violated, bootstrap

2. Residuals/errors normally distributed
 Can use histogram or P-P / Q-Q plot

 When violated, bootstrap

3. Independence of residuals/errors
 When violated, we can use multilevel modeling

4. Linearity
 When violated, transform Xs to meet this assumption

• Xs can have any distribution 5



R and RStudio

• Script

• Console

• Environment

• Object assignment

• Plotting

• Packages

• Help

• Commenting

• Data frames

• Functions and arguments
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Load Data
• Usually will use

 dataname = read.csv(“filepath”)

• We will use a dataset in the corrgram package about 322 
Major League Baseball regular and substitute hitters in 
1986
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Some Data Transformations – Not 
Focus of this Workshop
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1 Continuous Predictor – Scatterplot 

• Y = b0 + b1X1 + e

• Scatterplot can be quite revealing

• Want to make sure the relationship looks linear

• Otherwise you will probably want to transform 
your predictor

 Later in workshop
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1 Continuous Predictor – Model 

• Estimate = b = regression coefficient

• Standard error = standard deviation of 
sampling distribution
 Provides confidence intervals

 Most affected by N (sample size)

• t = b / se

• t and df -> p
 df = N-k-1

 N = sample size

 k = number of predictors

• Multiple R2 = correlation of predicted 
and actual values squared
 p-value is p from F (lower right)

• Adjusted R2 adjusts R2 based on 
number of predictors

For each 1-unit increase in SeasonSalary, the 

expected SeasonBattingAvg increases by .000022 10



Standardized Coefficients

• What if all values were standardized before 
entering model?

• Z = (X – Mean) / SD

• βs can be interpreted like correlations

 -1 to 1

 Called standardized regression coefficients

For each 1 SD increase in SeasonSalary, 

SeasonBattingAvg increases by .33 SDs
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Multiple Continuous Predictors

• Coefficients are partial 
coefficients

 Contribution of that variable 
holding other variables 
constant

 Unique contribution of that 
variable over and above 
other variables

Y

X2X1
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Adding a Predictor

For each 1 unit increase in CareerYears, 

the expected SeasonBattingAvg increases 

by -.00099, holding other variables constant 13



Adding a Predictor
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Categorical Predictors: Dichotomous
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Categorical Predictors: 3+ Levels
• Dummy Coding

 1 2 3 4 5 6

 1B  1 0 0 0 0 0

 2B  0 1 0 0 0 0

 3B  0 0 1 0 0 0

 C    0 0 0 1 0 0

 DH 0 0 0 0 1 0

 OF  0 0 0 0 0 0

 SS   0 0 0 0 0 1

• Effects Coding
 1 2 3 4 5 6

 1B  1 0 0 0 0 0

 2B  0 1 0 0 0 0

 3B  0 0 1 0 0 0

 C    0 0 0 1 0 0

 DH 0 0 0 0 1 0

 OF -1-1-1-1-1-1

 SS  0 0 0 0 0 1

• Dummy Coding

 Pick a reference group

 Estimate that group’s level of Y as the intercept

 For all other groups, estimate how different their level of 
Y is, compared to the dummy group as the bs

 I usually prefer this over effects coding

• Effects Coding

 Estimate the grand mean (mean of all groups) as the 
intercept

 For all other groups (except 1), estimate how different 
their level of Y is, compared to the grand mean as the bs
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Categorical Predictors: 3+ Levels

17



Categorical Predictors: 3+ Levels
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Comparing to ANOVA

Between-Group Variability

Within-Group Variability 19



ANCOVA – Categorical and 
Continuous Predictors

Catchers have a batting average .010 lower 

than outfielders, holding other variables 

constant
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Non-linear Relationships
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Interactions

• Interaction = effect of X1 depends 
on level of X2

 If that is true, opposite is true too

• Y = b0 + b1X1 + b2X2 + b3X1X2

• Y = b0 + b1X1 + (b2 + b3X1)X2

 b3 = For each 1-unit increase in X 
how much does b2 increase

 And vice-versa

• Can have 3-way, 4-way, etc. 
interactions
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Interaction Plot
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Spline Regression 
– Making Data
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Spline Regression – Model 

bs are slopes before and after knot
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Count Outcome
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Count Outcome –
Negative Binomial 
Model
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Count Outcome – Negative Binomial Model

For each 1-unit increase in log(CareerYears), 

the expected log(CareerAtBats) increases by 

1.12 28
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– Zero-Inflated 
Model

For each 1-unit increase in SeasonSalary, 

the expected log(SeasonHits) increases by 

.0004

Use when many observations have a 0 on the Y

29



Proportional Outcome – Beta Regression

For each 1-unit increase in SeasonSalary, the log odds 

of SeasonBatting Avg increases by .00011
Log odds = log(probability/1-probability)

Can do algebra to get probability at each X 
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Quantile (Percentile) Regression
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Dichotomous Outcome – Logistic Regression
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For each 1-unit increase in 

SeasonBattingAvg, the log odds of being an 

outfielder increases by 65

odds ratio = 2 -> probability of .66
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Ordinal Outcome - Ordered Logistic 
Regression
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Ordinal Outcome - Ordered Logistic 
Regression
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Ordinal Outcome –
Ordered Logistic 
Regression
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Categorical Outcome – Multinomial 
Logistic Regression
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Categorical Outcome – Multinomial 
Logistic Regression
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Categorical Outcome
– Multinomial Logistic 
Regression
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Nested Data – Multilevel Modeling
• Assumption of regression: independence of residuals/errors

 When violated, we can use multilevel modeling

• Dependence of residuals/errors usually results from grouping/nesting in the 
measured DV

 Students nested in classrooms/teachers

 Observations nested within participants (i.e., repeated measures)

 Participants nested in countries

• Conceptually, it’s like running separate regression models for each 
classroom and then aggregating them

• Can have student-level and classroom-level predictors

• Can have more than 2 levels
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Multilevel Equations
• Example with level-1 and level-2 predictors:

 Level-1 Model: 

 Yij = β0j + β1jXij + rij

 Level-2 Model: 

 β0j = γ00 + γ01Wj + u0j

 β1j = γ10 + γ11Wj + u1j

 Combined Model: 

 Yij = γ00 + γ01Wj + γ10Xij + γ11WjXij + u0j + u1jXij + rij

• Var(rij) = σ2

• Var(u0j) = τ00

• Var(u1j) = τ11

• Cov(u0j, u1j) = τ01
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Nested Data – Multilevel Modeling

• Level-1 Model: 

 Salaryij = β0j + β1jSeasonHomeRunsij + rij

• Level-2 Model: 

 β0j = 313.9 + u0j

 β1j = 19.3 + u1j

• Var(rij) = σ2 = 150331.9

• Var(u0j) = τ00 = 1560.0

• Var(u1j) = τ11 = 168.7

• Cor(u0j, u1j) = -.71

Within teams, a 1-unit increase in 

SeasonHomeRuns the expected Salary 

increases by 19.3 units 41



Nested Data – Multilevel Modeling

42



Nested Data – Multilevel Modeling
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Nested Data – Multilevel Modeling
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Regularization
• To prevent overfitting, take parsimony into account

• Ridge (L2)

 Causes regression coefficients to shrink

• Lasso (L1)

 Causes some regression coefficients to become 0

• Elastic Net

 Hybrid of other 2
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Overfit Multiple Regression Model
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Multicollinearity
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Ridge Regression
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Ridge Regression
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Lasso Regression
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Elastic Net Regression
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Bootstrapping
• Two assumptions of regression:

1. Homoscedasticity

 Variance of residuals does not change at levels of X

2. Residuals/errors normally distributed

 Can use histogram or P-P / Q-Q plot

• Can solve each with bootstrapping

 Imagine a dataset with N rows

 Could sample rows with replacement N times

 Run model with that new dataset

 Record results

 Repeat 10,000 times

 Provides distribution of results with a mean and standard deviation/error
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Bootstrapping Three-Predictor Model
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Causal Claims
• Correctly specified model

 Regression coefficients can be interpreted as causal effects if model is “correctly 
specified”

 Other models still valid prediction models

 All causes of Y that are correlated with any Xs in the model are in the model

 Rare, except for…

• Random assignment

 Creates a correctly specified model

 If randomly assigned condition is a predictor, nothing is correlated to it (assuming 
large enough N)

 So model is correctly specified

 If add covariates, can still interpret effects of condition causally

 Must be able to manipulate IV

 If cannot, try to make model as “correct” as possible

54



Future Directions

• Structural Equation Modeling (SEM)
 Path analysis

 Mediation

 Latent variables – model measurement error

• Factor Analysis

• Longitudinal data analysis
 Regressed change

 Predict t2 from t1 and other variables

 Difference scores
 Outcome is t2-t1

 MLM

 SEM
 Latent growth models

 Cross-lagged models

 Time series analyses

• Machine Learning
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