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General Linear Model

In a general linear model, the response 𝑦𝑖, 𝑖 = 1, ⋯ , 𝑛 is 

modelled by a linear function of independent variables 𝑥𝑗, 

𝑗 = 1, ⋯ , 𝑝 plus an error term.

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖 + 𝜀𝑖



General Linear Model

Here general refers to the dependence on potentially more 

than one explanatory variable, vs. the simple linear model: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜀𝑖

The model is linear in the parameters, e.g.

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽2𝑥𝑖
2 + 𝜀𝑖

but not e.g.

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖
𝛽2 + 𝜀𝑖

Dependent 

variable
Intercept Slope Independent 

variable

Random error



General Linear Model

We assume that the errors 𝜀𝑖 are independent and 

identically distributed such that

𝐸[𝜀𝑖] = 0
𝑣𝑎𝑟[𝜀𝑖] = 𝜎2

Typically we assume

𝜀𝑖~𝑁(0, 𝜎2)

as a basis for inference, e.g. t-tests on parameters. The 

errors are uncorrelated.



General Linear Model

Although a very useful framework, there are some 

situations where general linear models are not appropriate

the range of Y is restricted (e.g. binary, count)

the variance of Y depends on the mean

Generalized linear models extend the general linear model

framework to address both of these issues



Generalized Linear Model

Comparison

General Linear Model Generalized Linear 

Model

Special cases ANOVA, ANCOVA, 

MANOVA, MANCOVA, 

linear regression, 

mixed model

Linear regression, 

logistic regression, 

Poisson regression

Function in R Lm() Glm()

Typical method 

estimation

Least Square Maximum Likelihood



Generalized Linear Model

A generalized linear model is made up of a linear predictor

𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖

and two functions

a link function that describes how the mean, 𝐸[𝑌𝑖] = 𝜇𝑖

depends on the linear predictor

𝜂𝑖 = 𝑔[𝜇𝑖]

a variance function that describes how the variance, 

𝑣𝑎𝑟[𝑌𝑖], depends on the mean

𝑣𝑎𝑟[𝑌𝑖] = 𝜙𝑉(𝜇𝑖)

where the dispersion parameter 𝜙 is a constant



Generalized Linear Model

Normal General Linear Model as a Special Case

For the general linear model with ε~𝑁 0, 𝜎2 we have the 

linear predictor

𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖

the link function

𝑔[𝜇𝑖] = 𝜇𝑖

and the variance function

𝑉[𝜇𝑖] = 1



Generalized Linear Model

Modelling Binomial Data

Suppose

𝑌𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛𝑖 , 𝑝𝑖

and we wish to model the proportions 𝑌𝑖/𝑛𝑖. Then

𝐸[𝑌𝑖/𝑛𝑖] = 𝑝𝑖 𝑣𝑎𝑟[𝑌𝑖/𝑛𝑖] = 𝑝𝑖(1 − 𝑝𝑖)/𝑛𝑖

So our variance function is

𝑉[𝜇𝑖] = 𝜇𝑖(1 − 𝜇𝑖)

Our link function must map from(0,1) → (−∞, ∞). A 

common choice is

𝑔[𝜇𝑖] = 𝑙𝑜𝑔𝑖𝑡 𝜇𝑖 = log(
𝜇𝑖

1 − 𝜇𝑖
)



Generalized Linear Model

Modelling Poisson Data

Suppose

𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜆𝑖

Then

𝐸[𝑌𝑖] = 𝜆𝑖 𝑣𝑎𝑟[𝑌𝑖] = 𝜆𝑖

So our variance function is

𝑉[𝜇𝑖] = 𝜇𝑖

Our link function must map from(0, ∞) → (−∞, ∞). A 

natural choice is

𝑔[𝜇𝑖] = 𝑙𝑜𝑔 𝜇𝑖



Binary Data

Binary data may occur in two forms

ungrouped in which the variable can take one of two 

values, say success/failure

grouped in which the variable is the number of 

successes in a given number of trials

The natural distribution for such data is the 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝑛, 𝑝
distribution, where in the first case n = 1



Binary Data

Models for Binary Data

We saw previously that Binomial data may be modelled by 

a generalized linear model with logit link. This model is 

known as the logistic regression model and is the most 

popular for binary data.

There are two other links commonly used in practice:

probit link 𝑔[𝜇𝑖] = Φ−1 𝜇𝑖 where Φ denotes the 

cumulative distribution function of N(0, 1)

complementary log-log link 𝑔[𝜇𝑖] = log(− log 1 − 𝜇𝑖 )



Binary Data

Comparison of Links

The three links map the linear predictor  to the probability 

scale as follows:



Binary Data

Choice of Link

The logit and probit functions are symmetric and - once 

their variances are equated - are very similar. Therefore it 

is usually difficult to choose between them on the grounds 

of fit.

The logit is usually preferred over the probit because of its 

simple interpretation as the logarithm of the odds of 

success 𝑝𝑖/(1 − 𝑝𝑖).

The complementary log-log is asymmetric and may 

therefore be useful when the logit and probit links are 

inappropriate.

We will concentrate on using the logit link.



Logit Transformation

First, we move from the probability 𝑝𝑖 to the odds

defined as the ratio of the probability to its complement, or    
the ratio of favorable to unfavorable cases.

If the probability of an event is a half, the odds are one-to-
one or even 

Odd can take any positive value.

𝑜𝑑𝑑𝑠𝑖 =
𝑝𝑖

1 − 𝑝𝑖



Logit Transformation

Second, we take logarithms, calculating the logit or log-
odds

which has the effect of removing the floor restriction.

If the probability of an event is a half, the odds are even 
and logit is zero.

Negative logits represent probabilities below on half and 
positive logits correspond to probabilities above on half.

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = log(
𝑝𝑖

1−𝑝𝑖
)



Logistic Regression

Logistic function

It can take as an input any value 
from negative infinity to positive 
infinity, whereas the output is 
confined to values between 0 
and 1.

Variable 𝜂 could represent the 
exposure to some set of risk 
factors 

𝑓(𝜂𝑖) represents the probability 
of a particular outcome, give that 
set of risk factors.

logit
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𝜂𝑖 = log(
𝑝𝑖

1 − 𝑝𝑖
)  𝑝𝑖 = 𝑓(𝜂𝑖) =

1

1 + 𝑒−𝜂𝑖



Logistic Regression

Logistic function
The variable 𝜂 is a measure of the total contribution of all 

independent variables used in the model 

Each of the regression coefficients describes the size of the 

contribution of that independent variables

A positive value means that that independent variable increases 

the probability of the outcome;

A negative value means that independent variable decreases the 

probability of the outcome.

𝜂 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝



Logistic Regression

Fitting the logistic regression model
Criteria: Find values of unknown parameters that maximize the 

probability of obtaining the observed set of data.

Likelihood function: express the probability of the observed data 

as a function of the unknown parameters

The probability of a pair of observation (x1i,…, xki, yi)

The observations are assumed to be independent, the likelihood 

function has be expressed as follows:
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Logistic Regression

Fitting the logistic regression model
Maximum Likelihood (ML)

Log likelihood

Maximize log likelihood function by differentiating L() with respect 

to  and setting the resulting expressions equal to zero

The value of 𝛽 given by the solution to the above equations 

is called the maximum likelihood estimate and will be 

denoted as  𝛽

 

 ,

( ) 0

( ) 0

i i

i

k i i i

i

y p x

x y p x

 

 





   
1

( ) ln[ ( )] [ ln( ) (1 ) ln(1 )]
n

i i i i

i

L l y p x y p x 


    



Deviance

Test the goodness of fit

Deviance: measures how close the predicted values from the fitted 

model match the actual values from the raw data. 

D = -2[log-likelihood(proposed model) - log-likelihood(saturated model)]

A saturated model is a model that fits the data perfectly, so its log-

likelihood is the maximum. It has as many parameters as 

observations and hence it provides no simplification at all.

The deviance has a chi-squared asymptotic null distribution.

The degree of freedom is n-p, where n is the number of 

observations and p is the number of model parameters.

Smaller deviance, the better the model.



Wald Test

Testing the significance of the coefficients

Wald Test: a Wald test calculates a Z statistic, which is 

under the hypothesis that  = 0, the resulting ratio will follow a 

standard normal distribution. This z value is then squared, 

yielding a Wald statistic with a chi-square distribution.
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Interpretation of Logistic Models

Consider the logistic model

log(
𝑝𝑖

1−𝑝𝑖
)=𝛽0 + 𝛽1𝑥𝑖

If we increase 𝑥 by one unit

log(
𝑝𝑖

1−𝑝𝑖
)=𝛽0 + 𝛽1(𝑥𝑖+1) = 𝛽0 + 𝛽1𝑥𝑖 + 𝛽1

(
𝑝𝑖

1−𝑝𝑖
)=exp 𝛽0 + 𝛽1𝑥𝑖 exp(𝛽1)

the odds are multiplied by exp(𝛽1).



Example: Budworm Data

Collett(1991) describes an experiment on the toxicity of 

the pyrethoid trans - cypermethrin to the tobacco 

budworm. Batches of 20 moths of each sex were 

exposed to varying doses of the pyrethoid for three days 

and the number knocked out in each batch was recorded:

Since the doses are in powers of two, we will use 

log2(dose) as the response.

sex

Dose (𝜇𝑔)

1 2 4 8 16 32

Male 1 4 9 13 18 20

Female 0 2 6 10 12 16



Example: Budworm Data

Scatterplots of Binomial Data

For grouped binary data, scatterplots are more helpful:



Example: Budworm Data

Scatterplot Scales

When fitting a logistic model, it can also be helpful to plot the data on the 

logit scale. To avoid dividing by zero, we calculate the empirical logits

log
(𝑦𝑖 + 0.5)/𝑛𝑖

1 − (𝑦𝑖 + 0.5)/𝑛𝑖
= log

𝑦𝑖 + 0.5

𝑛𝑖 + 0.5 − 𝑦𝑖



Binomial Responses and glm

Now we would like to fit our candidate models. Binomial 

responses can be specified to glm in three ways:

a numeric vector giving the proportion of successes 𝑦𝑖/𝑛𝑖, 

in which case a vector of the prior weights 𝑛𝑖 must be 

passed to the weights argument

a numeric 0/1 vector (0 = failure); a logical vector (FALSE 

=failure), or a factor (first level = failure)

a two-column matrix with the number of successes and 

the number of failures

Better starting values are generated when the third format is 

used.



Example: Budworm Data

Modelling the data

A linear logistic model appears to be appropriate. A 

reasonable approach might be to consider the following 

linear predictors:

single line for both sexes (~ ldose)

parallel lines for each sex (~ ldose + sex)

separate lines for each sex (~ ldose + sex + ldose:sex)

How can we determine which model is best?



Nested Models

The candidate models for the budworm data are an 

example of nested models where each model is a special 

case of the models that have a greater number of terms.

We can compare nested models by testing the hypothesis 

that some of the parameters of a larger model are equal 

to zero.



Nested Models

For example suppose we have the model

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑝𝑥𝑝𝑖

we can test

𝐻0: 𝛽𝑞+1 = ⋯ = 𝛽𝑝 = 0

versus 𝐻1: 𝛽𝑗 ≠ 0, for some 𝑗 ∈ {𝑞 + 1, 𝑝}

using the likelihood ratio statistic

𝐿𝑅 = 2(𝑙𝑏𝑖𝑔 − 𝑙𝑠𝑚𝑎𝑙𝑙)

where 𝑙𝑚 is the maximized log-likelihood under model 𝑚, i.e.

𝑙(  𝛽𝑚). Under the null hypothesis, 𝐿𝑅 is approximately 𝜒𝑑
2

where 𝑑 = 𝑝 − 𝑞.



Example: Budworm Data

Modelling the data

Single line model

As expected, the coefficient of ldose is highly significant.

Parallel lines model

the Wald tests suggest both ldose and sex are needed in the model.

Likelihood ratio test can also be used to compare models and we 

can use anova to perform this test.

separate lines model

Using anova will test sequential addition of terms in this model.

Allowing separate slopes does not significantly reduce deviance.

Goodness-of-fit

The parallel lines model has a deviance of 6.76 on 9 

degrees of freedom, indicating that the model fits well.



Example: Budworm Data

For the budworm data, the parallel lines model is

log(
𝑝𝑖

1−𝑝𝑖
)=−3.47 + 1.06𝑙𝑑𝑜𝑠𝑒𝑖 + 1.10(𝑠𝑒𝑥𝑖== "𝑀")

Therefore

the odds of death for a male moth are exp 1.10 = 3.01
times that for a female moth, given a fixed dose of the 

pyrethroid.

the odds of death increase by a factor of exp 1.06 =
2.90 for every 𝑙𝑜𝑔 𝜇𝑔 of pyrethroid, for male or female 

moths.



Example: Budworm Data

Wald Confidence Intervals

Confidence intervals for the parameters can be based on 

the asymptotic normal distribution for  𝛽𝑗 .

For example a 95% confidence interval would be given by
 𝛽𝑗 ± 1.96 ∗ 𝑠. 𝑒. (  𝛽𝑗)

Such confidence intervals can be obtained as follows:
confint.lm(parr)



Prediction

The predict method for GLMs has a type argument, which 

may be specified as

"link" for predictions of 𝜂

"response" for predictions of 𝜇

If no new data is passed to predict, these options return 

object$linear.predictor and object$fitted.values respectively.



Example: Budworm Data



Example: Budworm Data



Thanks!


