3 The Log-Rank Test

m We look at 2 groups — extensions to several groups
possible

m When are two KM curves statistically equivalent?
— testing procedure compares the two curves

— we don‘t have evidence to indicate that the true
survival curves are different
m Nullhypothesis

H , : no difference between (true) survival curves

m Goal: To find an expression (depending on the data)
from which we know the distribution (or at least
approximately) under the nullhypothesis
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Derivation of test statistic L

Remission data: n=42

# failures # in risk set
) m, m,, n, ny, Expected cell counts:
1 0o 2 21 21 n;
2 0 2 21 19 € = P x(’"x;”f’"z;)
3 0 1 21 17 i+ Ty
4 0o 2 21 16 I T
5 0 2 21 14 _ .
Proportion # of failures
¢ 2 0 % 1= in risk set over both
7 1 0 17 12 Grkiba
8 0 4 16 12
10 1 0 15 8
11 0 2 13 8 ) n,; ( )
12 0 2 12 6 €31 = o— x\m, ; +m,;
13 1 0 12 4 J 2j
15 0o 1 1 4
16 1 0 1 3
17 0 1 10 3
22 1 1 7 2
23 1 1 6 1
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EXAMPLE

# failure times

O, —-E = Z m;; —e,.j)

Jj=1
0,-E, =-10.26
0,—-E, =10.26
(02 = Eg)z

Log-rank statistic = Var( 0,- Ez)

Remark: We could also work
with O, —E, and would get the
same statistic! Why?
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Distribution of log-rank statistic

H , : no difference between survival curves

(02 —E, )2
Var(O2 2

Log-rank statistic for two groups =

)’\’le

Idea of the Proof:

« If X is standard normal disitributed then X? has a y? distribution with 1 df
(assuming X to be one-dim)

0; - E;
JVar(0; — E;)

» Then X is standardized and appr. normal distributed for large samples

e Set X =

« Hence X?, which is exactly our statistic, has appr. a y? distribution.
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Log-Rank Test for Remission data UCR

m R-code

> time <-
¢c(6,6,6,7,10,13,16,22,23,6,9,10,11,17,19,20,25,32,32,34,35,1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,
12,12,15,17,22,23)

> status <-
c(i,1,1,1,1,1,1,11,90,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,2,1,1,1,1,12,1,1,1,1,1,1,1,1,1,1)

> treatment <~
cll,1,2,2,1,1,1,2,2,3,;1,1,3,1,1,2,3,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2;2,2:2,;2,;2;2,2;2,2;2)

> fit <- survdiff (Surv(time, status) ~ treatment)

p-value is the probability of obtaining a test

statistic at least as extreme as the one that
m Result was actually observed!

> fit
Call:
survdiff (formula = Surv(time, status) ~ treatment)

N Observed Expected (0O-E)”*2/E (O-E)"2/V
treatment=1 21 9 19.3 5.46 16.8
treatment=2 21 21 10.7 9.77 16.8

Chisq = 16.8 on 1 degrees of freedom, p = 4.17e-05

What does this tell us?
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R

The Log-Rank Test for Several
Groups

m H,: All survival curves are the same

m Log-rank statistics for > 2 groups involves variances
and covariances of 0; — E;

m (G (= 2)groups:
log-rank statistic ~y? with G — 1 df
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Remarks UCR

m Alternatives to the Log-Rank Test

Wilcoxen Variations of the log

Tarone-Ware rank test, derived by

Peto > applying different

Flemington-Harrington weights at the j™
failure time

(Z w(t;)(m; —e, )]
.

Weighting the
Test statistic:
Var Zw )(m, —e;)
j
Weight at jth
failure time
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Remarks

Choosing a Test

—

!

!

Results of different weightings usually

lead to similar conclusions

The best choice is test with most power

There may be a clinical reason to choose a particular
weighting

Choice of weighting should be a priori! Not fish for a
desired p-value!
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Stratified log rank test

m Variation of log rank test
m Allows controlling for additional (,stratified”) variable

m Split data into stratas, depending on value of
stratified variable

m Calculate O — E scores within strata
m Sum O — E across strata
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Stratified log rank test - Example - JCR

m Remission data

m Stratified variable: 3-level variable (LWBC3) indicating
low, medium, or high log white blood cell count (coded 1,
2, and 3, respectively)

->lwbc3 = 1

->1lwbc3 = 2 ->1wbc3 = 3
Events Events | Events Events | Events Events
X | observed expected X | observed expected X | observed expected
------- B e B e s 2
0 [ 0 2.91 0 \ 5 7.36 0 | 4 6.11
1 [ 4 1.09 1 | 5 2.64 1 | 12 9.89
....... R e e e
Total | 4 4.00 Total | 10 10,00 Total | 16 16.00
Total
; Events Treated Group: rx =0
vents expected
> observed  (*) Placebo Group: rx =1
0 9 16.38
1 21 13.62
............................. . . 2
S =P s Recall: Non-stratified test > y“-value of 16.79

and corresponding p-value rounded to 0.0000

(*) sum over calculations
within lwbc3 chi2 (1) =
[ 10.14, Pxr > chi2 = 0.0014 |
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Stratified Log-Rank Test for
Remission data

m R-code

> data <- read.table("http://www.sph.emory.edu/~dkleinb/surv2datasets/anderson.dat")

> lwbc3 <-
Clxs A ) s 52 oo e 16153620 2:2: 2525880263735 02 2o Ld T aB 3515373023035 3: 3420303, 37:2¢3)
> fit <~ survdiff (Surv(data$Vl,data$V2)~data$V5+strata(lwbc3))

m Result

> fit
Call:
survdiff (formula = Surv(data$vVl, data$v2)

N Observed Expected (O-E)"2/E (O-E)*2/V

data$v5=0 21 9 l16.4 3..33 10.1
data$vb=1 21 21 13.6 4.00 10.1
Chisg = 10.1 on 1 degrees of freedom, p = 0.00145

~ data$V5 + strata(lwbc3))
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Stratified vs. unstratified approach

ICR

Ay BB
Y

1 = group #,

Log rank unstratified

Oi—-E; = Z(”lij —ejj)

]

j = jth failure time

1= group #,
s = stratum #

Log rank stratified

Oi —Ei=)_ ) (mijs —eijs)
o

j = jth failure time,

Stratified or unstratified (G groups)
Under Hy:

log rank statistic ~x?* with
G—1df

Limitation: Sample size may be

small within strata

In next chapter: controlling for
other explanatory variables!
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4 Cox Proportional Hazards Model ~ UCR

= The formula for the Cox PH model is

h(z,x>=ho<t>em(gﬂ,x,.j

where

X=(X,X,,....X,)

are the explanatory/predictor variables.
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Explanation of the Formula

P

h(t,X)——- ho(t)exP Z:BiXi

=1

* Product of two quantities:
= h,(r) is called the baseline hazard
« Exponential of the sum of £, and X,

= X'’s zero (no X ’s): reduces to baseline hazard

= Baseline hazard is an unspecified function
= Semi-parametric model
» Reason for Cox model being popular
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Important Properties of the Cox PH Formula

Al x):ho(t)exp(g ﬂ,.x,.]

= The baseline hazard ho(t) does not depend on X but only
ont.

* The exponential involves the X ’'s but not ¢ .
= The X are time-independent
= Proportional Hazard assumption follows
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Time Independent Variables

Not changing over time
= Example: sex

Values are set attime t =0

Variables unlikely to change are often considered time

independent
= Example: smoking status

Also other variables are sometimes treated as time

independent
= Examples: age, weight
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Example: Data —

= T =weeks until going out of remission
= X, = group status
= X, =log WBC (confounder, effect modifier)

Interaction?
= Xy3=X,; X X, =group status X log WBC
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Example: R Output Model 1

call:
coxph(formula = Surv(time, event) ~ Rx, data = Data, method = "breslow")
n= 42
coef exp(coef) se(coef) z Ppr(>|z|)
RX 1.5092 4.5231 0.4096 3.685 0.000229 ***

SigmiT. codes: @ *¥%¥" 0.001- “**” 0.01 **" 0.05 “." 0.2 """ 1

exp(coef) exp(-coef) Tower .95 upper .95
RX 4.523 0.2211 2.027 10.09

Rsquare= 0.304 (max possible= 0.989 )

Likelihood ratio test 15.21 on 1 df, p=9.615e-05
wald test 13.58 on 1 df, p=0.0002288
Score (logrank) test 15.93 on 1 df, p=6.571e-05

> modell$loglik[2]
[1] -86.37962
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Example: R Output Model 3

call:
coxph(formula = Surv(time, event) ~ Rx * logwBC, data = Data, method =
"breslow")
n= 42
coef exp(coef)se(coef) z Prlz|)

RX 2.3549 10.5375 1.6810 1.401 0.161
TogwBC 8028  6.0665 4.036 45-05 ***
Rx: 10gWBC -0.3422 0.7102 |0.5197 -0.658

exp(coef) exp(-coef)lower .95 upper .95
RX 10.5375 0.0949 0.3907 284.201

TogwBC 6.0665 0.1648 2::5275 14.561
Rx:TogwBC 0.7102 1.4080 0.2564 1.967

Rsquare= 0.648 (max possible= 0.989 )

Likelihood ratio test= 43.8 on 3 df, p=1.633e-09
wald test = 30.6 on 3 df, =1.030e-06
Score (logrank) test = 45.9 on 3 df, p=5.95e-10

> model3%$loglik[2]
[1] {72.06572|
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Example: R Output Model 2

call:
coxph(formula = Surv(time, event) ~ Rx + logwBC, data = Data, method =

"breslow")

n= 42

coef exp (coef)se(coef) z Ppr(>lzl|)
RX [1.2941 3.6476] 0.4221 3.066 0.00217 **
TogwBC 1.6043 4.9746 0.3293 4.872 1.11e-06 *** pEeaae—.

exp(coef) exp(-coef) Tower .95 upper .95

RX 3.648 0.2742 L.595  8.343|
TogwBC  4.975 0.2010 2.609 9.486

Rsquare= 0.644 (max possible= 0.989 )

Likelihood ratio test= 43.41 on 2 df, p=3.744e-10
wald test = 31.78 on 2 df, p=1.254e-07
Score (logrank) test = 42.94 on 2 df, p=4.743e-10

> model2$1oglik[2]
[1] -72.27926
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Example: Continued
Reasons to include logWBC in the

I model
Confounding: crude versus Precision of confidence
adjusted HR are intervals: even if no
meaningfully different confounding we might
—must control for logWBC prefer to keep logWBC if

Cl is smaller
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4.2 Why is the Cox PH model popular? UCR

Reasons for the Popularity of the Model

= Robustness
Cox model is a “safe” choice of a model in many situations

= Because of the model form:

h(t,X) =Mxem(i ﬂ,x,.)

the estimated hazards are always non-negative.

=  Even though ,(¢) is unspecified we can estimate g.'s
and thus compute the hazard ratio.
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Reasons for the Popularity of the Model

= h(t,X) and S(t,X)can be estimated for a Cox model using
a minimum of assumptions.

= |n survival analysis the Cox model is preferred to a
logistic model, since the latter one ignores survival times
and censoring information.
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4.3 Computing the Hazards Ratio
Definition of the Hazard Ratio

= The Hazard Ratio is defined as

r e X)
Kz, X)
where
X' =(x],x;,..,X)
and
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Interpretation of the Hazard Ratio

» Hazard for one individual divided by the hazard for a
different individual

= For sake of interpretation we usually want HR>1 i.e.
Ale, X")> Az, X)

= We thus typically take
« X group with larger hazard (e.g. placebo group)
« X : group with smaller hazard (e.g. treatment group)
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Simplification of the Hazard Ratio

= Baseline hazard cancels out

Al X) (0 GXP(ZZ:
he,X) 7 (t)exp@

HR =

em(éﬁi(&*—xi))
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Example: Remission Data, Model 1

= Only one variable of interest: exposure status
« Placebo group: X, =1
« Treatment group: X, =0

* Hazard Ratio simplifies to

~

HR =exp(B (X - X,))= &

= Since ,5’1 = 1.509
we have HR=4.523
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4.4 Meaning of the Proportional Hazards | °R

Assumption

Meaning of the PH Assumption

= Remember that the PH assumption requires that the HR is

constant over time

HR =exp

/

X,

14

2

=l

i}

(Xi*_Xi)\
J
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Which one violates the assumption? |||CR

I

1a

=1
.

Active

Survival probability

Placebo

—&
=

Survival probability
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i

The End!
Thank youl!
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