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Summary: Not infrequently data are 
collected to study a particular distribution
or population but, because of the sampling 
mechanism used, the sample is not 
representative of the desired target 
distribution. For example, size biasing 
occurs when large items are more likely to 
be included in the sample than are small 
ones (a relatively frequent occurrence). 
Hidden truncation occurs when observations 
are only made subject to constraints on 
covariables (also more frequent than one 
might suspect).



We’ll begin with some examples.

(1)Hospital sojourn times.

We wish to determine the average length 
of stay in a large hospital.





Strategy:  Pick a particular time of day, say 

Noon on July 13.

Randomly select 50 of the occupied beds in 
the hospital.

Identify the patient in each bed. 



• For each patient, say patient “i”, determine 
how long he/she has been in the hospital 
say Y(i), and also track the patient to 
determine Z(i), the additional time until that 
patient is released.

• The total time that patient “i” spent in the 
hospital is then

•
• X(i)=Y(i)+Z(i)



Our estimate of the average time that a  
patient spends in the hospital is then:



Our estimate of the average time that a  
patient spends in the hospital is then:

Sounds good ?            



Our estimate of the average time that a  
patient spends in the hospital is then:

Sounds good ?            Any flaws ?



We’ll come back to the hospital in a while, 
but before we do, let’s look at another 
example.



We’ll come back to the hospital in a while, 
but before we do, let’s look at another 
example.

(2) What proportion of the children in the 
families of UCR students are female ? 



We’ll come back to the hospital in a while, 
but before we do, let’s look at another 
example.

(2) What proportion of the children in the 
families of UCR students are female ? 

To get a quick estimate, assuming my class 
is not atypical, I’ll do the following:



• In my class there are 35 female students.
• For each female student , I ask how many 

brothers she has and how many sisters 
she has. Assume that all 35 are from 
different families.

• For female student “i” we get Y(i) brothers 
and Z(i) sisters.



A TYPICAL FAMILY
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Size bias  !!!!

Both examples are instances in which size 
bias is present. 

This occurs when big items are more likely 
to be included in the sample than are small 
items. 

And, of course, it typically leads to 
overestimation of the population mean.
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One more example:Estimating 
the average size of reindeer 

herds in Lapland.
We fly around in a helicopter and when we 
see a herd, we take a picture so that we can 
count the number of animals in the herd, 
when we land after a day of searching.

The resulting data will be N(1),N(2),…,N(m), 
where m denotes the number of herds that 
we observed, and N(i) is the number of 
animals in the i”th herd.
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One more example:Estimating 
the average size of reindeer 

herds in Lapland.
This example is one in which size-bias is 
quite evident.

It will hard to spot small herds from the 
helicopter, big herds will be hard to miss.
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How serious is the problem ?
With the reindeer herds, it will depend on 
how sharp-eyed our spotter is. It may be 
hard to get a good estimate from such a 
potentially flawed sampling method.

Concerning  the proportion of females using 
data from my class, the estimate is bad, but 
we can correct it.
Concerning the average stay in the hospital; 
the estimate can be off by almost a factor of 
2   !!
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Time spent in the hospital.

Here the bias can be considerable.
We’ll look at a simple special case.

But, the argument will be a bit technical.

Perhaps a good time to check your e-mail 
on your phone, or your Apple watch.

If you haven’t already done so.



Time spent in the hospital

Suppose that hospital stays are 
exponentially distributed, i.e., we have

Assume that when a patient vacates a bed, 
it is immediately occupied by the next 
patient.



Time spent in the hospital
Under these asumptions the counting 
process tracking the number of occupants of 
a particular bed over time will be a Poisson 
process {N(t):t>0} with intensity \lambda.

Thus:  

Such a process has stationary independent 
increments.



Time spent in the hospital
In this case a hospital stay will have an 
exponential distribution with mean           .
But, curiously if we fix a time t*, and observe 
the expected wait until the next event (the 
next patient in the bed), it also will have an 
exponential distribution with mean           
and, provided the hospital has been in 
operation for quite a while, the the time that 
the bed occupant has been in place has 
mean approximately equal to 
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Time spent in the hospital
So our estimate will have mean 
approximately equal to         , a serious over-
estimate of the true mean hospital stay, 
namely       .

The problem with our estimation strategy is 
that when we arrive at a bed at noon on July 
13, we are much more likely to encounter a 
long term patient in the bed than a short 
term patient.  This leads to consideration of 
weighted distributions.
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Weighted distributions.
We’ll begin with a discrete example.

A random variable is discrete if it has only a 
finite or a countably infinite number of 
possible values.

E.G, X=the number that shows on  top when 
we roll a die.

E.G., Y=the number of tosses of a coin until 
a head appears
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Weighted distributions.
Consider a random variable X with possible 
values {x(1),x(2),….} and associated 
probabilities {p(1),p(2),….}.

But now assume that if the random variable 
takes the value x(i), it is only observed with 
probability w(x(i)).  Thus the probability of 
observing a realized value of X depends on 
the value assumed by X, according to a 
weight function w(.).
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Weighted distributions

A simple, and often reasonable, choice for 
the weight function is w(x)=x.  This 
corresponds to  size-biasing.

Big items are more likely to be observed 
than are small items. Remember the 
reindeer herds.
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More notation

If X has discrete density                then the

weighted version of X, denoted by 

has density                                          .

We will use the same notation with 
essentially the same interpretation in the 
case in which X is a continuous  variable.



• Of course, w(.) can be any non-negative 
function 

• Subject to the requirement that E(w(X)) 
exists.

• As we mentioned, for non-negative X’s , 
popular choices for w(x) include:



If X can take on both positive and negative 
values,  then popular choices for w(x) 
include:



What if we suspect the 
presence of size biasing.

• Suppose we have non-negative 
observations, supposed to have come 
from the density 

• But we suspect size biasing has occurred
i.e., instead our density might be 

What should we do?                   



What might we do ?

We could check which of the two models 
best fits the data using goodness of fit 
statistics.

Another possibility would be to consider the 
more general model

and test the hypothesis   
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Back to the hospital beds with 
exponential occupancy times.

Here our unweighted density is

And the simple weighted, size biased 
density is 

i.e.,  



Thus in this case we have 

where the X’s are i.i.d. exponential 
variables.
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This agrees with our earlier observation that, 
in this case, the data values that we 
collected look like sums of two independent 
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Exponentials in the hospital

This agrees with our earlier observation that, 
in this case, the data values that we 
collected look like sums of two independent 
exponential variables, instead of one.

What would have been a better data 
collecting strategy ?



Better data

After we identify the 50 beds that we will 
observe, wait in each case until a new 
occupant is installed and observe how long 
the new occupant stays.

This will indeed give us i.i.d. data and will 
avoid size-bias.



Enough of size-biasing.

Biasing mechanisms can involve covariables
and weight functions can also.

Let’s see an example.

We wish to study the weight distribution of 
applicants to become Riverside police 
officers.
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Applicant distribution

A plausible model is that the weights of the 
applicants follow a normal distribution with 
mean      and variance      .

But we only have reliable weight data for the 
officers that have been hired.

Is it reasonable to use this data to estimate  
and          ?
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Weights and heights

• A plausible model for the two dimensional 
variable (height,weight) is a clasical
bivariate normal model with normal 
marginal distributions and elliptical 
contours

Like this:
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Selection (discrimination !)

If you are too tall, you won’t be hired.

You wouldn’t fit in a police car.

Also if you are too short, you won’t be hired.

You couldn’t reach the brake pedal.
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We have “hidden truncation”.
Let’s, to simplify matters, just consider 
truncation from below.

i.e.; we observe X  only if a covariable Y 
exceeds some threshold c.

The distribution of observed X’s will not be 
normal even if (X,Y) has a bivariate normal 
distribution. 
(Unless X and Y are independent.)



Hidden truncation
• The distribution of the observed X’s will be 

skewed. It will look something like:



Hidden truncation:theory.

Begin with the Azzalini (1985 ) skew-normal 
density:

Or the two-parameter extension



From Azzalini to hiddden 
truncation

We add location and scale parameters to 
get a 4-parameter model which represents 
the family of all possible densities arising as 
marginal densities of X given that X is the 
first coordinate of a correlated bivariate 
normal variable that is only observed if the 
second coordinate exceeds a particular 
value.
i.e., this is the hidden truncation model



Hidden truncation model

The density is thus:



Hidden truncation model

The density is thus:

Note that this includes the normal model as 
a special case when           . 



Note that the model

is a weighted distribution, with a weight 
function which depends indirectly on the 
correlation and the truncation parameter.
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Inference

To see whether hidden truncation is present 
we can test the hypothesis                 .

The 4 parameters in the model can be 
estimated using maximum likelihood or the 
method of moments.

Warning: Easier said than done. 
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The likelihood surface may have no 
achievable maximum.

Reparameterization is often suggested.

Careful choice of moment equations is 
required.
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• Note, hidden truncation may occur without 
our knowledge of the source.

• However, the data can sometimes indicate 
its presence.

• It may be much more prevalent than we 
suspect.



Multivariate hidden truncation

A univariate model may begin with (X,Y) 
having a bivariate normal distribution but 
with X being observed only if Y<c.

Both X and Y can instead be 
multidimensional.



Multivariate hidden truncation

e.g.,  Students seeking admission to 
Prestigious University take four tests:
An English test

A Math test

An IQ test

A physical fitness test.
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Multivariate hidden truncation

Students are admitted to Prestigious 
University on the basis of their scores on 

The English test and the math test.

The distribution of IQ scores and physical 
fitness scores of the admitted students will 
involve hidden truncation.



Multivariate hidden truncation

For a hidden truncation model in higher 
dimensions. Begin with (X,Y) a random 
vector of dimension k+m and consider:



If (X,Y) has a k+m dimensional normal 
distribution this construction yields what is 
known as the closed skew normal 
distribution for X. 

Closed, since the model has marginals and 
conditionals of the same type.



If (X,Y) has a k+m dimensional normal 
distribution, i.e.

Then



A little algebraic bookkeeping yields the 
standard closed skew normal model in the 
form:



As can be imagined, estimation of the 
parameters in this model

can be expected to be challenging.

And life will be more complicated when we 
introduce location parameters, etc.



So our message is:   Be alert for the 
possibility that hidden selection mechanisms 
have been at work causing our target model 
to be inappropriate, and that a weighted 
version will better fit the data. Two 
particularly common cases involve hidden 
truncation and size biasing; but there are 
many others that might be encountered.

Look closely at the data !!!



Remember the reindeer and the policemen.



Some references
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One which includes the male/female ratio 
example.



Two more

One which includes the male/female ratio 
example.

And one from which I stole my title !!



Thank you for your attention.


