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Introduction to Analysis of Variance

Analysis of Variance (ANOVA) is a statistical method
used to test differences between two or more means.
Analysis of Variance (ANOVA) is a statistical method
used to test differences between two or more means.

The name is rather than “Analysis of Means” because
Inferences about means are made by analyzing variance.
The name is rather than “Analysis of Means” because
Inferences about means are made by analyzing variance.

We want to use the sample results to test the
following hypotheses (k groups):
We want to use the sample results to test the
following hypotheses (k groups):

H0: 1=2=3=.  .  . = k

Ha:  Not all population means are equal



Introduction to Analysis of Variance

H0: 1=2=3=.  .  . = k

Ha:  Not all population means are equal

If H0 is rejected, we cannot conclude that all
population means are different.
If H0 is rejected, we cannot conclude that all
population means are different.

Rejecting H0 means that at least two population
means have different values.
Rejecting H0 means that at least two population
means have different values.



 Sampling Distribution of     Given H0 is Truexx

Introduction to Analysis of Variance
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Sample means are close together
because there is only

one sampling distribution
when H0 is true.
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Introduction to Analysis of Variance

 Sampling Distribution of     Given H0 is Falsexx

33 1x1x 2x2x3x3x 11 22

Sample means come from
different sampling distributions

and are not as close together
when H0 is false.



For each population, the response variable is
normally distributed.

Assumptions for Analysis of Variance

The variance of the response variable, denoted  2,
is the same for all of the populations.
The variance of the response variable, denoted  2,
is the same for all of the populations.

The observations must be independent.The observations must be independent.



 The test is based on two estimates of the population
variance ( )= (∑ ) sample mean at the jth group̿ = (∑ ∑ ) grand average= [∑ ( − ) ] ( −1) sample variance at

the jth group

One-Way ANOVA



 The estimate of  2 based on the variation of the
sample observations within each sample is called the
mean square error and is denoted by MSE.

Within-Samples Estimate
of Population Variance
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Denominator represents
the degrees of freedom

associated with SSE

Numerator is the
sum of squares

due to error
and is denoted SSE



Between-Treatments Estimate
of Population Variance

 A between-treatment estimate of  2 is called the
mean square treatment and is denoted MSTR.
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the degrees of freedom
associated with SSTR

Numerator is the
sum of squares

due to treatments
and is denoted SSTR



Comparing the Variance Estimates: The F Test

 If the null hypothesis is true and the ANOVA
assumptions are valid, the sampling distribution of
MSTR/MSE is an F distribution with MSTR d.f.
equal to k - 1 and MSE d.f. equal to nT - k.

 If the means of the k populations are not equal, the
value of MSTR/MSE will be inflated because MSTR
overestimates  2.

 Hence, we will reject H0 if the resulting value of
MSTR/MSE appears to be too large to have been
selected at random from the appropriate F
distribution.

 MSTR only estimates if the population means are
equal. If population means are not equal, MSTR
estimates a quantity larger than .



Test for the Equality of k Population Means

F = MSTR/MSE

H0: 1=2=3=.  .  . = k
Ha:  Not all population means are equal

 Hypotheses

 Test Statistic



Test for the Equality of k Population Means

 Rejection Rule

where the value of F is based on an
F distribution with k - 1 numerator d.f.
and nT - k denominator d.f.

Reject H0 if p-value <ap-value Approach:

Critical Value Approach: Reject H0 if F > Fa



Sampling Distribution of MSTR/MSE

 Rejection Region

Do Not Reject H0Do Not Reject H0

Reject H0Reject H0

MSTR/MSEMSTR/MSE

Critical ValueCritical Value
FF

Sampling Distribution
of MSTR/MSE

a



ANOVA Table

SST is partitioned
into SSTR and SSE.

SST’s degrees of freedom
(d.f.) are partitioned into
SSTR’s d.f. and SSE’s d.f.

Treatment
Error
Total

SSTR
SSE
SST

k – 1
nT – k
nT - 1

MSTR
MSE

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares

MSTR/MSE

F



ANOVA Table

SST divided by its degrees of freedom nT – 1 is the
overall sample variance that would be obtained if we
treated the entire set of observations as one data set.

SST divided by its degrees of freedom nT – 1 is the
overall sample variance that would be obtained if we
treated the entire set of observations as one data set.

With the entire data set as one sample, the formula
for computing the total sum of squares, SST, is:
With the entire data set as one sample, the formula
for computing the total sum of squares, SST, is:
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ANOVA Table

ANOVA can be viewed as the process of partitioning
the total sum of squares and the degrees of freedom
into their corresponding sources: treatments and error.

ANOVA can be viewed as the process of partitioning
the total sum of squares and the degrees of freedom
into their corresponding sources: treatments and error.

Dividing the sum of squares by the appropriate
degrees of freedom provides the variance estimates
and the F value used to test the hypothesis of equal
population means.

Dividing the sum of squares by the appropriate
degrees of freedom provides the variance estimates
and the F value used to test the hypothesis of equal
population means.



 Example:  Reed Manufacturing

Test for the Equality of k Population Means

A simple random sample of five managers from
each of the three plants was taken and the number
of hours worked by each manager for the previous
week is shown on the next slide.

Conduct an F test usinga= .05.



1
2
3
4
5

48
54
57
54
62

73
63
66
64
74

51
63
61
54
56

Plant 1
Buffalo

Plant 2
Pittsburgh

Plant 3
DetroitObservation

Sample Mean
Sample Variance

55 68 57
26.0 26.5 24.5

Test for the Equality of k Population Means



Test for the Equality of k Population Means

H0:  1= 2= 3
Ha:  Not all the means are equal
where:

 1 = mean number of hours worked per
week by the managers at Plant 1

 2 = mean number of hours worked per
week by the managers at Plant 2

  3 = mean number of hours worked per
week by the managers at Plant 3

1.  Develop the hypotheses.

 p -Value and Critical Value Approaches



Test for the Equality of k Population Means

 Box plot of sample means



2.  Specify the level of significance. a= .05

Test for the Equality of k Population Means

 p -Value and Critical Value Approaches

3.  Compute the value of the test statistic.

MSTR = 490/(3 - 1) =    245
SSTR = 5(55 - 60)2 + 5(68 - 60)2 + 5(57 - 60)2 = 490

= (55 + 68 + 57)/3 = 60
(Sample sizes are all equal.)

Mean Square Due to Treatments

̿



3.  Compute the value of the test statistic.

Test for the Equality of k Population Means

MSE = 308/(15 - 3) =    25.667

SSE = 4(26.0) + 4(26.5) + 4(24.5) = 308
Mean Square Due to Error

(continued)

F = MSTR/MSE = 245/25.667 =   9.55

 p -Value and Critical Value Approaches



Treatment
Error
Total

490
308
798

2
12
14

245
25.667

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Squares

9.55

F

Test for the Equality of k Population Means

 ANOVA Table



Test for the Equality of k Population Means

5.  Determine whether to reject H0.

We have sufficient evidence to conclude that the
mean number of hours worked per week by
department managers is not the same at all 3 plant.

The p-value < .05, so we reject H0.

With 2 numerator d.f. and 12 denominator d.f.,
the p-value is .01 for F = 6.93.   Therefore, the
p-value is less than .01 for F = 9.55.

 p –Value Approach

4.  Compute the p –value.



Test for the Model Assumptions

 Normality assumption: Q-Q plot

1
2
3
4
5

48 (-7)
54 (-1)
57 (2)
54 (-1)
62 (7)

73 (5)
63 (-5)
66 (-2)
64 (-4)
74 (6)

51 (-6)
63 (6)
61 (4)
54 (-3)
56 (-1)

Plant 1
Buffalo

Plant 2
Pittsburgh

Plant 3
DetroitObservation

Sample Mean
Sample Variance

55 68 57
26.0 26.5 24.5



Test for the Model Assumptions

 Normality assumption: Q-Q plot



Test for the Model Assumptions

 Equal variance assumption



Nonnormal Responses and Transformations

 Square root transformation: ∗ =
Observations are poisson distributed

 Logarithmic transformation: ∗ =
Observations are lognormal distributed

 Box-Cox transformation( ) = {( − 1)/ = 0log( ) = 0
Find value of λ that minimizes SSE(λ).



Nonnormal Responses and Transformations

 An example:
A civil engineer is interested in determining whether
four different methods of estimating flood flow
frequency produce equivalent estimates of peak
discharge when applied to the same watershed.



Nonnormal Responses and Transformations

Method Observations
1 0.34 0.12 1.23 0.70 1.75 0.12
2 0.91 2.94 2.14 2.36 2.86 4.55
3 6.31 8.37 9.75 6.09 9.82 7.24
4 17.15 11.82 10.95 17.20 14.35 16.82



Nonnormal Responses and Transformations

 Before transformation



Nonnormal Responses and Transformations

 After transformation: square root



Nonnormal Responses and Transformations

Source DF Type III SS Mean Square F Value Pr > F
method 3 32.68421267 10.89473756 81.05 <.0001



post hoc Tests

 ANOVA compares all individual mean differences
simultaneously, in one test

 A significant F-ratio indicates that at least one
difference in means is statistically significant
• Does not indicate which means differ significantly

from each other!
 post hoc tests are follow up tests done to determine

exactly which mean differences are significant, and
which are not



aEW = 1 – (1 –a)k(k-1)/2

 The comparisonwise Type I error ratea indicates the
level of significance associated with a single pairwise
comparison.

 The experimentwise Type I error rateaEW is the
probability of making a Type I error on at least one of
the k(k – 1)/2 pairwise comparisons.

 The experimentwise Type I error rate gets larger for
problems with more populations (larger k).

Type I error rate



 Tukey’s Test: test all pairwise mean comparisons

 Back to Reed manufacturing example

The starred values indicate the pairs of means are
significantly different.

Multiple Comparisons
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 Dunnett’s Test: compare treatment means with a
control

Multiple Comparisons
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 It is more efficient to conduct one study that includes
both independent variables.

 It allows a test of the interaction between the
variables.

Two-Way ANOVA



 An example:
The researchers were interested in whether the
weight of a companion of a job applicant would affect
judgments of a male applicant's qualifications for a
job. Two independent variables were investigated: (1)
whether the companion was obese or of typical
weight and (2) whether the companion was a
girlfriend or just an acquaintance.

Two-Way ANOVA



 There are three effects of interest in this experiment:
• Weight: Are applicants judged differently

depending on the weight of their companion?

• Relationship: Are applicants judged differently
depending on their relationship with their
companion?

• Weight x Relationship Interaction: Does the effect of
weight differ depending on the relationship with
the companion?

Two-Way ANOVA



Two-Way ANOVA

Companion
Weight Marginal

Mean
Obese Typical

Relationship
Girlfriend 5.65 6.19 5.92

Acquaintance 6.15 6.59 6.37

Marginal Mean 5.90 6.39



Two-Way ANOVA



Two-Way ANOVA

Source df SS MS F p

Weight 1 10.4673 10.4673 6.214 0.0136

Relation 1 8.8144 8.8144 5.233 0.0234

W x R 1 0.1038 0.1038 0.062 0.8043

Error 172 289.7132 1.6844

Total 175 310.1818

 ANOVA Table



 Another example: Twelve subjects were selected from
a population of high-self-esteem subjects and an
additional 12 subjects were selected from a population
of low-self-esteem subjects. Subjects then performed
on a task and (independent of how well they really
did) half in each esteem category were told they
succeeded and the other half were told they failed.
Therefore, there were six subjects in each of the four
esteem/outcome combinations and 24 subjects in all.
After the task, subjects were asked to rate (on a 10-
point scale) how much of their outcome (success or
failure) they attributed to themselves as opposed to
being due to the nature of the task.

Two-Way ANOVA



Two-Way ANOVA

Esteem
High Low

Outcome

Success

7 6
8 5
7 7
8 4
9 5
5 6

Failure

4 9
6 8
5 9
4 8
7 7

3 6



Two-Way ANOVA

Esteem

High Low Marginal
Mean

Outcome
Success 7.333 5.500 6.467
Failure 4.833 7.833 6.333

Marginal Mean 6.083 6.667



Two-Way ANOVA

High self-esteem:1
Low self-esteem: 2
Success: 1
Failure: 2

Nonparallel lines indicate interaction. The
significance test for the interaction determines
whether it is justified to conclude that the lines
in the population are not parallel.



Two-Way ANOVA

Source df SS MS F p
Outcome 1 0.0417 0.0417 0.0256 0.8744

Esteem 1 2.0417 2.0417 1.2564 0.2756
O x E 1 35.0417 35.0417 21.5641 0.0002
Error 20 32.5000 1.6250
Total 23 69.6250

 ANOVA Table



 An example:

Unequal Sample Size

Rep
Treatment A Treatment B Treatment C

Block
1

Block
2

Block
3

Block
1

Block
2

Block
3

Block
1

Block
2

Block
3

1 17 43 16 21 39 19 22 46 26
2 28 30 21 45 22 30 31
3 19 39 24 42 16 33 26
4 21 44 25 47 31 33
5 19 44 29
6 25



Rep
Treatment A Treatment B Treatment C

Block
1

Block
2

Block
3

Block
1

Block
2

Block
3

Block
1

Block
2

Block
3

1 17 43 16 21 39 19 22 46 26
2 28 30 21 45 22 30 31
3 19 39 24 42 16 33 26
4 21 44 25 47 31 33
5 19 44 29
6 25

Mean at each
block 20.8 40 16 22.8 43.3 19 29 46 28.3

unweighted 25.6 28.3 34.4

( ) 29.09091 29.18182 30.18182

Unequal Sample Size
 Weighted and unweighted means



Unequal Sample Size
 Weighted and unweighted means

• In the case to summarizing and comparing groups for
one-way and balanced designs, weighted and
unweighted means are equivalent.

• In unbalanced designs with more than one effect, the
weighted mean for a group might not accurately reflect
the “typical” response for that group, since it does not
take other effects into account. Unweighted means are
more appropriate.

• Statistical analysis programs use different terms for
means that are computed controlling for other effects.
SPSS calls them estimated marginal means, whereas SAS
and SAS JMP call them least squares means.


