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What is Bayesian inference? And why is it useful?

You are probably familiar with “frequentist” analysis

Probability is a property of the external/natural world;
inherent property of a coin or dice or population

Inferring this property requires repeated observation; e.g.,
1,000 coin flips

Reporting results is awkward; can’t report probability of a
heads but instead the probability that an interval will cover
this property



Overview Analytical methods Computational methods Practical advice

What is Bayesian inference? And why is it useful? (cont.)

Bayesian analysis posits that probability is best conceived of as a
subjective belief

(Note above: “you are probably familiar . . . ”)

The goal of research is to change beliefs about properties of
the world; Bayesian analysis is a way to inform your audience
how they rationally should change their beliefs after observing
data

A single observation can be quite meaningful depending on
prior beliefs
Reporting results is intuitive; e.g., probability of a heads
Optional: we hold subjective beliefs about
probabilities/distributions before we observe data, so that
information should not be discarded
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What is Bayesian inference? And why is it useful? (still
cont.)

Practical reasons, given computational methods:

Can approximate frequentist results

But Bayesian methods are much more flexible and/or
computationally faster

Easier to state uncertainty about arbitrary functions of
parameters

Natural way to multiply impute missing data (additional
parameters to estimate)
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A basic example: testing for a disease

Here is what we know about a test procedure

Incidence of the disease in a population, p(D) = 0.02

Probability of the test giving an alert given the presence of
the disease, p(A|D) = 0.95

Probability of the test giving an alert in the absence of the
disease (false positive), p(A|Dc) = 0.03
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Bayesian statistics: testing for a disease (cont.)

If test is positive (Alert occurs) use Bayes’ Rule:

p(D|A) = p(D)p(A|D)
p(D)p(A|D)+p(Dc )p(A|Dc )

= 0.02×0.95
0.02×0.95+0.98×0.03

= 0.38
⇒ subjective probability that patient has the disease, given only
one observation (!)

Patient went from subjective probability of 0.02 to 0.38 of
having the disease

But, just because test is positive does not mean the patient
certainly has the disease
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Doing Bayesian statistical analysis

General form of Bayes rule for statistical modeling:
p(θ|y) ∝ p(θ)p(y |θ)

In words, the posterior density (belief) is proportional to the
prior density (belief) times the likelihood of observing the data
given those beliefs
We can drop the normalizing constant that makes the
posterior a true probability density

The old fashioned way was to derive the posterior analytically,
often using “conjugate” priors

A conjugate prior for a likelihood yields a posterior in the same
form as the prior
Example, conjugate prior for a binomial distribution is the beta
distribution; or normal-normal . . .
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Old fashioned Bayesian statistics

Analytical solution for conjugate normal prior

Let yi
iid∼ N(µ, σ2), i = 1, . . . , n, with σ2 known, and

y = (y1, . . . , yn)′. If µ ∼ N(µ0, σ
2
0) is the prior density for µ, the µ

has posterior density,

µ|y ∼ N

(
µ0σ

−2
0 +y n

σ2

σ−2
0 + n

σ2

,
(
σ−20 + n

σ2

)−1)

“Precision” is 1
variance

Precision-weighted average for the posterior mean

Posterior precision is the sum or the prior precision and the
data precision

(note Bayesian and MLE converge with diffuse priors and/or
lots of data)
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Bayesian computational methods allow you to solve
complex models

Bayesian methods are much more flexible and/or
computationally faster

Easier to state uncertainty about arbitrary functions of
parameters

Natural way to multiply impute missing data (additional
parameters to estimate)

and remember, with diffuse priors and/or large datasets Bayesian
methods give similar results as MLE
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New-fangled Bayesian statistics: MCMC

“Bayesian estimation using Gibbs sampling” (WinBUGS,
OpenBUGS, JAGS, etc.)

Gibbs sampling: sample an estimate from a candidate posterior
distribution for each parameter, conditional on the current
estimate of all other parameters
MCMC = “Markov Chain Monte Carlo” = run the Gibbs
sampler repeatedly until the parameters estimates converge to
the posterior distribution (proof: stochastic process must
converge under minimal conditions if the model is identified)

Result is a simulated posterior distribution: computational
approximation of the posterior

The vector of draws for each parameter is the marginal
posterior distribution
Use tools to assess convergence and conduct analysis/graphing
For example, trivial to create sampling distributions of
functions of parameters
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New-fangled Bayesian statistics: MCMC (cont.)

MCMC procedure

1 Specify model (likelihood and priors) with WinBUGS code

2 Load data and compile model

3 Provide initial values for parameters, latent variables, missing
data

4 Run model for an initial “burn-in” period until MCMC
converges on the posterior distribution

5 Save a sample of draws for parameters of interest

6 Summarize marginal distributions, plots, statistical tests
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Example

Model of the mean

Likelihood:
massi ∼ φ(µ, τ)

}
1 ≤ i ≤ n.obs IID assumption

Priors:
µ ∼ dunif(0, 5000) Flat postive prior (l.h.s. not centered)
τ = 1

σ2 Precision is inverse of variance
σ2 = σ × σ Define variance in model
σ ∼ dunif(0, 100) Flat positive prior

Let’s run this model in OpenBUGS . . .
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Common problems....

Common problems and some advice

Always runs multiple chains (usually three) in order to test
convergence using BGR diagnostic

BGR diagnostic assesses within-to-between chain variance
(assumes overdispersed/random initial values)
Mathematical and empirical identification (just because you
can write it down does not mean you should estimate it)
Best to start with simple model and build up complexity

Assess burnin period, mixing carefully

Be sure there are no missing data on RHS

Read the manual; and Gelman and Hill (2006) is a great
resource for multilevel modeling

Learn scripting language
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R interface

Using OpenBUGS with R

In practice, you want to store your data and analyze/graph results
within R (or Stata or SAS etc.)

Once you know how to use OpenBUGS you can read
documentation to these R packages:

R2OpenBUGS, BRugs = Interact with OpenBUGS within R

CODA = Suite of tools to assess convergence and describe
results
BRugs installs/loads all three

Prepare data and inits text files to read directly into OpenBUGS

Read OpenBUGS output as MCMC object for use in CODA and
presenting results

Call OpenBUGS from R for automating Bayesian analysis
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