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Fundamental Issues of the GLM

 Three basic questions asked:

 Is there a relationship between variables?

 What direction is this relationship?

 What is the size of this relationship

 Modeling the data

 Assessment of error

 Model comparisons



Terminology of the GLM

 “General” refers to the many tests encompassed by GLM

 Our Y variable is the outcome, predicted, or dependent variable

 Our X variable(s) is the regressor, predictor, or covariate

 More loose terms

 Typically called regression with continuous predictors

 ANOVA with categorical predictors

 ANCOVA with at least one of each

 But really, they’re the same thing



Predicting scores

 Data = Model + error

 Modeling begins with a very simple value- 𝑌 =  𝑌 + 𝑒𝑖

 Model fit is judged according to the ordinary least squares estimation


 (  𝑌− 𝑌)2

𝑁
= variance in the residuals

 Relationship between accuracy, correlation, and residuals

 This model is used for most common statistical techniques



What is the best predictor?

 Imagine we had no predictor variables…what would our best guess be?


 (  𝑌− 𝑌)2

𝑁
is at a minimum when using the mean

 When using predictors we would use the “conditional” mean

 With perfect prediction, observed and expected values are the same-
 (  𝑌− 𝑌)2

𝑁
is zero



Bivariate regression

 Regression equation forms basis of the GLM

 Variables can be included to reduce the residual error

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑒𝑖

 𝑏0 represents the expected values when X = 0

 𝑏1 is the expected change in Y for a one unit change in Y

 𝑒𝑖 = the error after taking model prediction into account

 This regression equation represents the best fit line



The best fit line

Data

X Y

8 2

9 3

9 3

10 4

6 7

7 5

4 5

5 7

3 8

1 9

2 9

2 10

The model and graph

 𝑌 = 10.27 -.78X



Correlation

 Measure of linear association between X and Y, addresses the three 
questions of the GLM

 Regression parameters can be used to calculate correlation

 𝑟𝑥𝑦 = 𝑏1
𝑆𝑦

𝑆𝑥

 Standardized regression equation:

  𝑍𝑦 = 𝑟𝑍𝑥

 Correlation of previous data is r = -.90

  𝑍𝑦 = −.90𝑍𝑥

 With one predictor, r is also equal to correlation between predicted and 
observed Y’s.



Variance explained

 We can make one modification to our model

 𝑉𝑎𝑟 𝑑𝑎𝑡𝑎 = 𝑉𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 + 𝑉𝑎𝑟(𝑒𝑟𝑟𝑜𝑟)

 Our model will tell us the proportion of variance explained

 𝑅2 = 1 −
𝑉𝑎𝑟(𝑒𝑟𝑟𝑜𝑟)

𝑉𝑎𝑟 (𝑑𝑎𝑡𝑎)

 r2 = .80

 This is applied to the multivariate case, and used to evaluate overall model 

fit



Traditional t-test

 A more specialized form of the regression

 𝑟 =
𝑡2

𝑡2+𝑑𝑓

 Equivalent to 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑒𝑖

 Where 𝑏1 is equal the mean difference between groups

 𝑒𝑖 is the within group variations

 The goal of a t-test is the same goal as that of OLS regression

 All information from a t-test can be gained from regression and vice versa



3 
types 
of t 
tests

One sample t-test Test whether the population mean 
is different from a constant

1 distribution

Paired Samples t-test Test whether the population mean of 
differences between paired scores is equal to 0

2 distributions

Correlation/relationship exists

Independent Samples t-test Test the relationship between 2 
categories and a quantitative variables

2 distributions

NO relationship exists



Sample Data

X Y

0 3.0

0 2.0

0 1.0

0 2.0

0 3.0

0 4.0

0 4.0

0 5.0

1 3.0

1 2.0

1 3.0

1 7.0

1 8.0

1 6.9

1 10.0

1 11.0

1 9.0

t.test(Y~X,data) 
Welch Two Sample t-test data: Y by X 
t = -3.215, df = 10.347, p-value = 0.008871 
0.95 percent confidence interval: -6.365351 -1.167982

Call: lm(formula = Y ~ X, data = data) 
Coefficients: 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 2.8889 0.8284 3.487 0.00305 ** 
X           3.7667 1.1716 3.215 0.008871 
Residual standard error: 2.485 on 16 degrees of freedom 
Multiple R-squared: 0.3925, Adjusted R-squared: 0.3545 
F-statistic: 10.34 on 1 and 16 DF, p-value: 0.008871



Effect Size

Independent Sample Equation – Use Total N

Paired Sample Equation – N is number of pairs

We also get an correlation!
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Confidence Intervals

Independent Samples Equation

Paired Samples Equation

   
   

2
21

2
21

1

1

XX

XX

StXXUL

StXXLL













   

   
D

D

StYXUL

StYXLL











ANOVA

 ANOVA is another specific form of regression

 Assesses the relationship between outcome and multiple categories

 Capable of doing everything a t-test can do, F = t2 with 1 df in numerator

 Most parts of ANOVA have direct analogs in regression

 The η2= (
𝑆𝑆𝑚𝑜𝑑𝑒𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) statistic used in ANOVA is the value of R2



Hypothesis testing with ANOVA

T test

 Research question: the effect 
of Drug X on depression

 Give 1 group a dosage of drug 
X and another gets zero 
dosage

 State IVs and DVs

 State hypotheses

 Calculate t statistic

 Compare to sampling 
distribution for t

 Reject of retain H0

ANOVA

 Research question: the effect 
of Drug X on depression

 You give 1 group high dosage
of Drug X, a 2nd group low 
dosage, and a 3rd group gets 
zero dosage

 State IVs and DVs

 State your hypothesis

 Calculate F ratio

 Compare to sampling 
distribution for F

 Reject or retain H0

 Follow up multiple 
comparison test



Sample data from ACT and education

Education level Mean SD

Less than high school 27.48 5.21

High school 27.49 6.06

Some college 26.98 5.81

Completed college 28.29 4.85

Some graduate work 29.26 4.35

Completed graduate 

degree

29.60 3.95



ANOVA vs. Regression

Call: lm(formula = ACT ~ as.factor(education)) 
Residuals: Min 1Q Median 3Q Max 
-23.9773 -3.2945 0.5263 3.7055 9.0227 
Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept)   27.4737 0.6319       43.480  < 2e-16 *** 
Education1    0.0152  0.9513       0.016   0.98725 
education2   -0.4964  0.9573      -0.519   0.60425 
Education3    0.8209  0.6943       1.182   0.23748 
education4    1.7872  0.7511       2.379   0.01761 * 
education5    2.1292  0.7488       2.844   0.00459 ** 
Residual standard error: 4.771 on 694 degrees of freedom 
Multiple R-squared: 0.02887, Adjusted R-squared: 0.02187 
F-statistic: 4.126 on 5 and 694 DF, p-value: 0.001063

summary(aov(ACT~as.factor(education)))
Df SumSq MeanSq F value Pr(>F) 
5   470     93.90  4.126 0.00106 ** 

Residuals 694 15794 22.76 

η2 = (
𝑆𝑆𝑚𝑜𝑑𝑒𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) = (

470

470+15794
)  = .0288



What have we seen so far?

Models that look like competitors really 
are not

Even comparisons of means are using OLS

Better models are those that reduce 
residual error

Effect sizes are analogous across different 
methods as well



Comparing models

 Remember:

 Data = Model + error

 The goal of adding predictors should be to reduce the error

 ∆𝑅2 = 𝑅𝑚𝑜𝑑𝑒𝑙 2
2 - 𝑅𝑚𝑜𝑑𝑒𝑙 1

2

 If additional predictors reduce error, they should be included

 Parsimonious models should be preferred



Multiple Regression

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + …𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 The regression equation has no limit on predictors

 Each of these coefficients represents partial coefficients

 𝑏0 is now the predicted value when all X’s are zero

 Can build models simultaneously or hierarchically



Partial coefficients

• We are often interested in 

knowing partial relationships

• Tells us unique relationship or 

contribution

• Necessary for making causal 

inferences

• Several different measures of 

partial coefficients



Partial coefficients



Standardized Regression 

 Often our units don’t have substantive meaning

 We can z-score our variables to give more meaning

 Standardized slopes include a special meaning

 Denoted as β

 Inferences and model fit will remain the same as unstandardized 



More multiple regression

 No statistical difference between covariate and predictor in regression

 Predictors can be either continuous or categorical

 Typically r > β

 But r < β can happen

 Can proceed hierarchically or simultaneously, depending on research 

question



Modeling Interactions

 Typically modeled as a product of predictors

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + 𝑏3𝑋𝑖1𝑋𝑖2…𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 Indicate the extent to which the effect of one variable relies on another 

variable

 Positive sign represents synergy, negative represents dampening



The GLM can handle non-linearity

 If need a non-linear model, we add one 

more term

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖1
2 + 𝑒𝑖

 Can easily interpret sign of 𝑏2

 Important to center

 Parameters also become more 

interpretable with centered variables



Nonlinearity may not be a curve

 Sometimes data fit two curves 

together

  𝑌 = -2 + .5X When x ≤ 2

  𝑌 = -2 + 1.5X When x > 2

 Need to be careful about 

overfitting



Analysis of Covariance

 Often used when dealing with continuous and categorical predictors

 Long history of figuring out effect of condition at constant levels of other 

variable– HA!

 Begin by adjusting outcome based on level of covariate (continuous)

 Test association with remaining categorical variable

 Reduces error variance and clarifies relationship

 Regression doesn’t care, all variables are welcome



Regression to the mean

 Extreme scores on X are associated with less extreme scores on Y

 This doesn’t mean there is less variability

 Occurs whenever r < 1.0

 Can deceive us into thinking effects exist when they really don’t

 Indicates the importance of controlling for a previous time point



Assumptions of the GLM

 Normality of residuals

 Outcome must be continuous

 Independence of observations

 Homoscedasticity

 No measurement error



Normality of residuals

 Likely indicates misspecified model

 Curve might be more appropriate than a line

 Could mean violation of our second assumption

 Best course is to figure source of non-normality



Discrete outcomes

 Entire family of models for outcomes that are not continuous

 Logistic regression

 Multinomial logistic regression

 Ordinal logistic regression

 Poisson regression or negative binomial for counts

 All rely on maximum likelihood estimation

 Often have the other assumptions as well



Nonindependence

 Disaggregate variables (known as the atomistic fallacy)

 Aggregate up to the group level (ecological fallacy)

 Two stage least squares

 Cluster robust standard errors

 Multilevel models



Heteroscedasticity

 Often a byproduct of violations

 Check for subgroup differences

 Transform variables

 Adjustment of the standard errors

 Weighted least squares

 But really, problem is not that large



Measurement error

 In the bivariate case, will attenuate relationships

 In the multivariate case ??????????

 Could correct for unreliability (but need proper reliability estimates!)

 Could always try to get more reliable measures

 Latent variable modeling will correct this issue



Orthogonality

 ANOVA assumes uncorrelated factors

 Also model must be balanced

 If predictors are correlated, model is not orthogonal

 Regression easily handles correlate X’s

 If unbalanced, or factors are correlated, then advantages of regression 

become more pronounced



Coding schemes for regression

 Dummy coding

 Effects coding

 Contrast coding



Dummy coding

 Require the use of a “reference group”

 Reference group = 0, all others = 1

 G -1 variables are needed

 Intercept is the mean of reference group

 Slopes represent means of other groups 



Example Dummy coding

  𝑌 = 𝑏𝑂 + 𝑏1𝐷𝑜𝑔 + 𝑏2𝐶𝑎𝑡

 Because bird is zero, 𝑏𝑂 is the mean for birds

 The equation for Dog:

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1 1 + 𝑏2 0

 The equation for Cat:

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1 0 + 𝑏2 1

 b’s represent mean differences from the bird 

group 

Variable X1 X2

Dog 1 0

Cat 0 1

Bird 0 0



Effects Coding

 Requires a “throw away” group

 This group = -1, all others 1

 Still need G -1 variables 

 Intercept and slopes change meaning

 Closest to what ANOVA is doing

 Most information is redundant with dummy coding



Example Effects Coding

  𝑌 = 𝑏𝑂 + 𝑏1𝐷𝑜𝑔 + 𝑏2𝐶𝑎𝑡

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 + 𝑏1(−1) + 𝑏2(−1)

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 −𝑏1 − 𝑏2

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1(1) + 𝑏2(0)

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 +𝑏1

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1(0) + 𝑏2(−1)

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 +𝑏2

Variable X1 X2

Dog 1 0

Cat 0 1

Bird -1 -1

• Grand mean:

•
𝐵𝑖𝑟𝑑+𝐷𝑜𝑔+𝐶𝑎𝑡

3

•
(𝑏𝑂−𝑏1− 𝑏2)+𝑏𝑂+𝑏1+𝑏𝑂+𝑏2

3

•
3𝑏𝑂+𝑏1−𝑏1+𝑏2− 𝑏2

3

•
3𝑏𝑂

3
= 𝑏𝑂

• Intercept is grand mean, 

slopes are deviations 

from GM



Contrast Coding

 Requires more specific hypotheses about data

 Several necessary or desirable properties

 Contrasts must sum to zero

 Distances of 1 preferable (for interpretable coefficients)

 Sum of the product of contrasts should equal 0 (this ensures orthogonality)

 Still need G-1 variables for orthogonality

 Parameters are now differences between contrast groups

 Intercept is more difficult to interpret

 Can give different results from dummy and effects coding



Example Contrast Coding

 Look at what we are predicting here and if we satisfy our requirements

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 + 𝑏1(−2/3) + 𝑏2(0)

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 −
2

3𝑏1

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1(1/3) + 𝑏2(1/2)

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 +
1

3𝑏1
+ 
1

2𝑏2

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1
1

3
− 𝑏2(1/2)

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 +
1

3𝑏1
-
1

2𝑏2

 What do our parameters mean in this context?

Variable X1 X2

Dog 1/3 -1/2

Cat 1/3 1/2

Bird -2/3 0



Causality

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + …𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 This *implies* we know causal relationship

 Statistical control is better than nothing

 But model misspecification is a major issue

 Causality is in design, not analysis

 In some contexts, this may not matter


