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Fundamental Issues of the GLM

 Three basic questions asked:

 Is there a relationship between variables?

 What direction is this relationship?

 What is the size of this relationship

 Modeling the data

 Assessment of error

 Model comparisons



Terminology of the GLM

 “General” refers to the many tests encompassed by GLM

 Our Y variable is the outcome, predicted, or dependent variable

 Our X variable(s) is the regressor, predictor, or covariate

 More loose terms

 Typically called regression with continuous predictors

 ANOVA with categorical predictors

 ANCOVA with at least one of each

 But really, they’re the same thing



Predicting scores

 Data = Model + error

 Modeling begins with a very simple value- 𝑌 =  𝑌 + 𝑒𝑖

 Model fit is judged according to the ordinary least squares estimation


 (  𝑌− 𝑌)2

𝑁
= variance in the residuals

 Relationship between accuracy, correlation, and residuals

 This model is used for most common statistical techniques



What is the best predictor?

 Imagine we had no predictor variables…what would our best guess be?


 (  𝑌− 𝑌)2

𝑁
is at a minimum when using the mean

 When using predictors we would use the “conditional” mean

 With perfect prediction, observed and expected values are the same-
 (  𝑌− 𝑌)2

𝑁
is zero



Bivariate regression

 Regression equation forms basis of the GLM

 Variables can be included to reduce the residual error

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑒𝑖

 𝑏0 represents the expected values when X = 0

 𝑏1 is the expected change in Y for a one unit change in Y

 𝑒𝑖 = the error after taking model prediction into account

 This regression equation represents the best fit line



The best fit line

Data

X Y

8 2

9 3

9 3

10 4

6 7

7 5

4 5

5 7

3 8

1 9

2 9

2 10

The model and graph

 𝑌 = 10.27 -.78X



Correlation

 Measure of linear association between X and Y, addresses the three 
questions of the GLM

 Regression parameters can be used to calculate correlation

 𝑟𝑥𝑦 = 𝑏1
𝑆𝑦

𝑆𝑥

 Standardized regression equation:

  𝑍𝑦 = 𝑟𝑍𝑥

 Correlation of previous data is r = -.90

  𝑍𝑦 = −.90𝑍𝑥

 With one predictor, r is also equal to correlation between predicted and 
observed Y’s.



Variance explained

 We can make one modification to our model

 𝑉𝑎𝑟 𝑑𝑎𝑡𝑎 = 𝑉𝑎𝑟 𝑚𝑜𝑑𝑒𝑙 + 𝑉𝑎𝑟(𝑒𝑟𝑟𝑜𝑟)

 Our model will tell us the proportion of variance explained

 𝑅2 = 1 −
𝑉𝑎𝑟(𝑒𝑟𝑟𝑜𝑟)

𝑉𝑎𝑟 (𝑑𝑎𝑡𝑎)

 r2 = .80

 This is applied to the multivariate case, and used to evaluate overall model 

fit



Traditional t-test

 A more specialized form of the regression

 𝑟 =
𝑡2

𝑡2+𝑑𝑓

 Equivalent to 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑒𝑖

 Where 𝑏1 is equal the mean difference between groups

 𝑒𝑖 is the within group variations

 The goal of a t-test is the same goal as that of OLS regression

 All information from a t-test can be gained from regression and vice versa



3 
types 
of t 
tests

One sample t-test Test whether the population mean 
is different from a constant

1 distribution

Paired Samples t-test Test whether the population mean of 
differences between paired scores is equal to 0

2 distributions

Correlation/relationship exists

Independent Samples t-test Test the relationship between 2 
categories and a quantitative variables

2 distributions

NO relationship exists



Sample Data

X Y

0 3.0

0 2.0

0 1.0

0 2.0

0 3.0

0 4.0

0 4.0

0 5.0

1 3.0

1 2.0

1 3.0

1 7.0

1 8.0

1 6.9

1 10.0

1 11.0

1 9.0

t.test(Y~X,data) 
Welch Two Sample t-test data: Y by X 
t = -3.215, df = 10.347, p-value = 0.008871 
0.95 percent confidence interval: -6.365351 -1.167982

Call: lm(formula = Y ~ X, data = data) 
Coefficients: 

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 2.8889 0.8284 3.487 0.00305 ** 
X           3.7667 1.1716 3.215 0.008871 
Residual standard error: 2.485 on 16 degrees of freedom 
Multiple R-squared: 0.3925, Adjusted R-squared: 0.3545 
F-statistic: 10.34 on 1 and 16 DF, p-value: 0.008871



Effect Size

Independent Sample Equation – Use Total N

Paired Sample Equation – N is number of pairs

We also get an correlation!
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Confidence Intervals

Independent Samples Equation

Paired Samples Equation
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ANOVA

 ANOVA is another specific form of regression

 Assesses the relationship between outcome and multiple categories

 Capable of doing everything a t-test can do, F = t2 with 1 df in numerator

 Most parts of ANOVA have direct analogs in regression

 The η2= (
𝑆𝑆𝑚𝑜𝑑𝑒𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) statistic used in ANOVA is the value of R2



Hypothesis testing with ANOVA

T test

 Research question: the effect 
of Drug X on depression

 Give 1 group a dosage of drug 
X and another gets zero 
dosage

 State IVs and DVs

 State hypotheses

 Calculate t statistic

 Compare to sampling 
distribution for t

 Reject of retain H0

ANOVA

 Research question: the effect 
of Drug X on depression

 You give 1 group high dosage
of Drug X, a 2nd group low 
dosage, and a 3rd group gets 
zero dosage

 State IVs and DVs

 State your hypothesis

 Calculate F ratio

 Compare to sampling 
distribution for F

 Reject or retain H0

 Follow up multiple 
comparison test



Sample data from ACT and education

Education level Mean SD

Less than high school 27.48 5.21

High school 27.49 6.06

Some college 26.98 5.81

Completed college 28.29 4.85

Some graduate work 29.26 4.35

Completed graduate 

degree

29.60 3.95



ANOVA vs. Regression

Call: lm(formula = ACT ~ as.factor(education)) 
Residuals: Min 1Q Median 3Q Max 
-23.9773 -3.2945 0.5263 3.7055 9.0227 
Coefficients: Estimate Std. Error t value Pr(>|t|) 
(Intercept)   27.4737 0.6319       43.480  < 2e-16 *** 
Education1    0.0152  0.9513       0.016   0.98725 
education2   -0.4964  0.9573      -0.519   0.60425 
Education3    0.8209  0.6943       1.182   0.23748 
education4    1.7872  0.7511       2.379   0.01761 * 
education5    2.1292  0.7488       2.844   0.00459 ** 
Residual standard error: 4.771 on 694 degrees of freedom 
Multiple R-squared: 0.02887, Adjusted R-squared: 0.02187 
F-statistic: 4.126 on 5 and 694 DF, p-value: 0.001063

summary(aov(ACT~as.factor(education)))
Df SumSq MeanSq F value Pr(>F) 
5   470     93.90  4.126 0.00106 ** 

Residuals 694 15794 22.76 

η2 = (
𝑆𝑆𝑚𝑜𝑑𝑒𝑙

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
) = (

470

470+15794
)  = .0288



What have we seen so far?

Models that look like competitors really 
are not

Even comparisons of means are using OLS

Better models are those that reduce 
residual error

Effect sizes are analogous across different 
methods as well



Comparing models

 Remember:

 Data = Model + error

 The goal of adding predictors should be to reduce the error

 ∆𝑅2 = 𝑅𝑚𝑜𝑑𝑒𝑙 2
2 - 𝑅𝑚𝑜𝑑𝑒𝑙 1

2

 If additional predictors reduce error, they should be included

 Parsimonious models should be preferred



Multiple Regression

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + …𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 The regression equation has no limit on predictors

 Each of these coefficients represents partial coefficients

 𝑏0 is now the predicted value when all X’s are zero

 Can build models simultaneously or hierarchically



Partial coefficients

• We are often interested in 

knowing partial relationships

• Tells us unique relationship or 

contribution

• Necessary for making causal 

inferences

• Several different measures of 

partial coefficients



Partial coefficients



Standardized Regression 

 Often our units don’t have substantive meaning

 We can z-score our variables to give more meaning

 Standardized slopes include a special meaning

 Denoted as β

 Inferences and model fit will remain the same as unstandardized 



More multiple regression

 No statistical difference between covariate and predictor in regression

 Predictors can be either continuous or categorical

 Typically r > β

 But r < β can happen

 Can proceed hierarchically or simultaneously, depending on research 

question



Modeling Interactions

 Typically modeled as a product of predictors

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + 𝑏3𝑋𝑖1𝑋𝑖2…𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 Indicate the extent to which the effect of one variable relies on another 

variable

 Positive sign represents synergy, negative represents dampening



The GLM can handle non-linearity

 If need a non-linear model, we add one 

more term

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖1
2 + 𝑒𝑖

 Can easily interpret sign of 𝑏2

 Important to center

 Parameters also become more 

interpretable with centered variables



Nonlinearity may not be a curve

 Sometimes data fit two curves 

together

  𝑌 = -2 + .5X When x ≤ 2

  𝑌 = -2 + 1.5X When x > 2

 Need to be careful about 

overfitting



Analysis of Covariance

 Often used when dealing with continuous and categorical predictors

 Long history of figuring out effect of condition at constant levels of other 

variable– HA!

 Begin by adjusting outcome based on level of covariate (continuous)

 Test association with remaining categorical variable

 Reduces error variance and clarifies relationship

 Regression doesn’t care, all variables are welcome



Regression to the mean

 Extreme scores on X are associated with less extreme scores on Y

 This doesn’t mean there is less variability

 Occurs whenever r < 1.0

 Can deceive us into thinking effects exist when they really don’t

 Indicates the importance of controlling for a previous time point



Assumptions of the GLM

 Normality of residuals

 Outcome must be continuous

 Independence of observations

 Homoscedasticity

 No measurement error



Normality of residuals

 Likely indicates misspecified model

 Curve might be more appropriate than a line

 Could mean violation of our second assumption

 Best course is to figure source of non-normality



Discrete outcomes

 Entire family of models for outcomes that are not continuous

 Logistic regression

 Multinomial logistic regression

 Ordinal logistic regression

 Poisson regression or negative binomial for counts

 All rely on maximum likelihood estimation

 Often have the other assumptions as well



Nonindependence

 Disaggregate variables (known as the atomistic fallacy)

 Aggregate up to the group level (ecological fallacy)

 Two stage least squares

 Cluster robust standard errors

 Multilevel models



Heteroscedasticity

 Often a byproduct of violations

 Check for subgroup differences

 Transform variables

 Adjustment of the standard errors

 Weighted least squares

 But really, problem is not that large



Measurement error

 In the bivariate case, will attenuate relationships

 In the multivariate case ??????????

 Could correct for unreliability (but need proper reliability estimates!)

 Could always try to get more reliable measures

 Latent variable modeling will correct this issue



Orthogonality

 ANOVA assumes uncorrelated factors

 Also model must be balanced

 If predictors are correlated, model is not orthogonal

 Regression easily handles correlate X’s

 If unbalanced, or factors are correlated, then advantages of regression 

become more pronounced



Coding schemes for regression

 Dummy coding

 Effects coding

 Contrast coding



Dummy coding

 Require the use of a “reference group”

 Reference group = 0, all others = 1

 G -1 variables are needed

 Intercept is the mean of reference group

 Slopes represent means of other groups 



Example Dummy coding

  𝑌 = 𝑏𝑂 + 𝑏1𝐷𝑜𝑔 + 𝑏2𝐶𝑎𝑡

 Because bird is zero, 𝑏𝑂 is the mean for birds

 The equation for Dog:

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1 1 + 𝑏2 0

 The equation for Cat:

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1 0 + 𝑏2 1

 b’s represent mean differences from the bird 

group 

Variable X1 X2

Dog 1 0

Cat 0 1

Bird 0 0



Effects Coding

 Requires a “throw away” group

 This group = -1, all others 1

 Still need G -1 variables 

 Intercept and slopes change meaning

 Closest to what ANOVA is doing

 Most information is redundant with dummy coding



Example Effects Coding

  𝑌 = 𝑏𝑂 + 𝑏1𝐷𝑜𝑔 + 𝑏2𝐶𝑎𝑡

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 + 𝑏1(−1) + 𝑏2(−1)

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 −𝑏1 − 𝑏2

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1(1) + 𝑏2(0)

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 +𝑏1

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1(0) + 𝑏2(−1)

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 +𝑏2

Variable X1 X2

Dog 1 0

Cat 0 1

Bird -1 -1

• Grand mean:

•
𝐵𝑖𝑟𝑑+𝐷𝑜𝑔+𝐶𝑎𝑡

3

•
(𝑏𝑂−𝑏1− 𝑏2)+𝑏𝑂+𝑏1+𝑏𝑂+𝑏2

3

•
3𝑏𝑂+𝑏1−𝑏1+𝑏2− 𝑏2

3

•
3𝑏𝑂

3
= 𝑏𝑂

• Intercept is grand mean, 

slopes are deviations 

from GM



Contrast Coding

 Requires more specific hypotheses about data

 Several necessary or desirable properties

 Contrasts must sum to zero

 Distances of 1 preferable (for interpretable coefficients)

 Sum of the product of contrasts should equal 0 (this ensures orthogonality)

 Still need G-1 variables for orthogonality

 Parameters are now differences between contrast groups

 Intercept is more difficult to interpret

 Can give different results from dummy and effects coding



Example Contrast Coding

 Look at what we are predicting here and if we satisfy our requirements

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 + 𝑏1(−2/3) + 𝑏2(0)

 𝑀𝑒𝑎𝑛 𝐵𝑖𝑟𝑑 = 𝑏𝑂 −
2

3𝑏1

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 + 𝑏1(1/3) + 𝑏2(1/2)

 𝑀𝑒𝑎𝑛 𝐶𝑎𝑡 = 𝑏𝑂 +
1

3𝑏1
+ 
1

2𝑏2

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 + 𝑏1
1

3
− 𝑏2(1/2)

 𝑀𝑒𝑎𝑛 𝐷𝑜𝑔 = 𝑏𝑂 +
1

3𝑏1
-
1

2𝑏2

 What do our parameters mean in this context?

Variable X1 X2

Dog 1/3 -1/2

Cat 1/3 1/2

Bird -2/3 0



Causality

 𝑌𝑖 = 𝑏0 + 𝑏1𝑋𝑖1 + 𝑏2𝑋𝑖2 + …𝑏𝑘𝑋𝑖𝑘 + 𝑒𝑖

 This *implies* we know causal relationship

 Statistical control is better than nothing

 But model misspecification is a major issue

 Causality is in design, not analysis

 In some contexts, this may not matter


