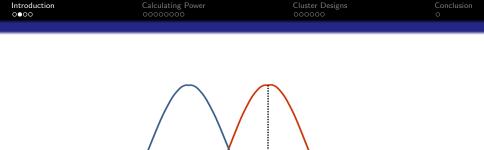
Introduction	Calculating Power	Cluster Designs	Conclusion
0000		000000	O

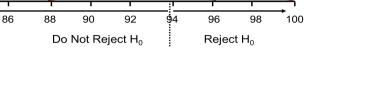
Power!

Kevin M. Esterling

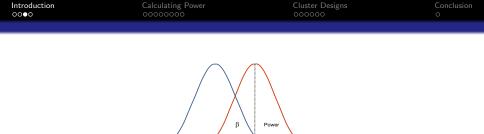

UC Riverside

November 2, 2017

Introduction	Calculating Power	Cluster Designs	Conclusion
0000			


Hypothesis testing and power

- In null hypothesis statistical testing (NHST) we test $H_0: \tau = 0$ against $H_1: \tau \neq 0$
- Two types of research error in NHST:
- Type I error: falsely reject null when it is true
 - Controlled by the significance level or "size" of the test
 - At $\alpha = 0.05$ only 5 times in 100 would you observe p < 0.05
- Type II error: falsely reject the alternative when it is true
 - Power is the percent of time alternative is accepted when true
 - Usual symbol is κ (sometimes $\beta = 1 \kappa$)
 - Higher power is better more likely to detect an effect for a given significance level


β

84

 $\alpha/2$

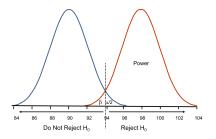
Power

86

84

90 92

Do Not Reject Ho


88

al2

64

96 98 100

Reject H₀

Introduction	Calculating Power	Cluster Designs	Conclusion
000●		000000	O
Sample size/ Pe	ower		

Power is the probability that you can reject a false null hypothesis. Several elements of your study determine the power.

- Elements typically not under your control:
 - Effect size (β)
 - Variability in the outcomes (σ^2)
- Elements typically under your control:
 - Sample size (N)
 - Power requirement (κ)
 - Significance level (α)
 - Proportion assigned to treatment v. control (P)
 - Including covariates that are correlated with outcomes (X)

Introduction	Calculating Power	Cluster Designs	Conclusion
0000	•0000000		O
t units			

To test a hypothesis, and to describe a study's power, we need to rescale test statistic into "t" units

$$t = \frac{ATE}{SE(ATE)} \tag{1}$$

Introduction	Calculating Power	Cluster Designs	Conclusion
0000	○●○○○○○○	000000	0

Estimate the ATE using regression

In order to run the regression to estimate the ATE (i.e., $\beta),$ we assume,

$$Y_i = \alpha + \beta Z_i + \epsilon_i$$
(2a)

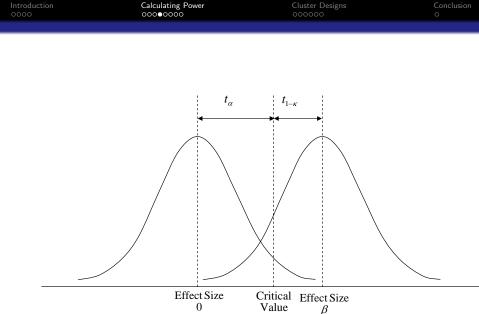
$$\epsilon_i \sim N(0; \sigma^2)$$
(2b)

Then the standard error of the ATE is

$$\sqrt{\frac{1}{P(1-P)}\frac{\sigma^2}{N}} \tag{3}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Introduction	Calculating Power	Cluster Designs	Conclusion
0000	00●00000	000000	O
Convert + u	nite to β unite		


Convert t units to β units

We can convert back and forth between t and β units

$$t = \frac{\beta}{SE(\beta)}$$
(4a)
$$\beta = t \times SE(\beta)$$
(4b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let's derive the basic power formula

β

Introduction	Calculating Power	Cluster Designs	Conclusion
0000		000000	O
Deriving the	e basic power formı	la	

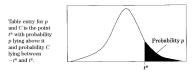
We need to find the area to the right of the critical value for the alternative hypothesis sampling distribution

$$\beta = t \times SE(\beta) \tag{5a}$$

$$\beta = (t_{\alpha} + t_{(1-\kappa)}) \times SE(\beta)$$
(5b)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

$$\frac{\beta}{SE(\beta)} - t_{\alpha} = t_{(1-\kappa)}$$
(5c)


... Then look up the area to the right of $t_{(1-\kappa)}$

Introduction 0000 Calculating Power

Cluster Designs

t-table.jpg (JPEG Image, 879 × 1187 pixels)

https://s3.amazonaws.com/udacity-hosted-downloads/t-table.jpg

					Tail n	robabil	ity n					
df	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0003
	1,000	1.376	1.963	3.078	6,314	12.71	15.89	31.82	63.65	127.3	318.3	636.4
1		1.061	1.963	1.896	2.920	4,308	4.849	6,965	9,925	127.3	22.33	31.6
2 3 4	.816	1.061	1.386	1.638	2.320	4,303	4.849 3.482	4.541	5.841	7.453	22.33	31.6
3	.765	.941	1.250	1.533	2.333	2,776	2,999	4.541	4,604	5,598	7.173	8.610
- 5	.741		1.156	1.476	2.152	2.571	2,757	3,365	4.032	4,773	5.898	6.86
5	.718	.920	1.155	1.440	1.943	2.571	2.612	3,365	3,707	4.317	5.206	5,956
6	.711	.906	1.134	1.440	1.895	2.965	2.512	2,998	3,499	4.029	4.785	5.408
- 8	.706	.890	1.108	1.397	1.800	2,306	2.449	2,896	3,355	3.833	4.501	5.04
ŝ	.703	.883	1.100	1.383	1.833	2.262	2,398	2.821	3,250	3,690	4.297	4,78
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.58
11	.697	.876	1.035	1.963	1.796	2.201	2.328	2.718	3,105	3,497	4.025	4.43
12	.695	.873	1.083	1.356	1.782	2,179	2,308	2.681	3,055	3,428	3,930	4.318
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2,650	3,012	3,372	3.852	4.22
14	.692	.868	1.076	1.345	1.761	2.145	2.254	2.624	2.977	3,326	3,787	4.14
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2,002	2.947	3.286	3.733	4.07
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3,695	4.01
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2,898	3.222	3,646	3.96
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3,197	3.611	3.92
19	.688	.861	1.066	1.328	1.729	2,003	2.205	2,539	2,861	3,174	3,579	3.88
20	.687	.860	1.064	1.325	1.725	2,086	2,197	2.528	2.845	3.153	3.552	3.85
21	.686	.859	1.063	1.323	1.721	2,080	2,189	2,518	2.831	3,135	3,527	3.81
22	.686	.858	1.061	1.321	1.717	2,074	2.183	2.508	2.819	3.119	3.505	3.79
23	.685	.858	1.060	1.319	1.714	2.039	2.177	2,500	2.807	3,104	3.485	3.76
24	.685	.857	1.059	1.318	1.711	2,064	2.172	2.492	2.797	3.091	3,467	3.74
25	.684	.856	1.058	1.316	1.708	2,050	2.167	2.485	2.787	3.078	3.450	3.72
25 27	.684	.856	1.058	1.315	1.705	2.055	2.162	2,479	2,779	3.067	3.435	3.70
27	.684	.855	1.057	1.314	1.708	2,052	2,158	2.473	2,771	3,057	3.421	3.69
28	.683	.855	1.056	1.313	1.701	2.048	2.154	2.467	2.763	3.047	3.408	3.67
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2.756	3.038	3,396	3.65
30	.683	.854	1.055	1.310	1.607	2.042	2.147	2.457	2.750	3.030	3.385	3.64
40	.681	.851	1,050	1,303	1.684	2.021	2.123	2.423	2,704	2.971	3,307	3.55
50	.679	.849	1.047	1.299	1.676	2.009	2.109	2.403	2.678	2,937	3.261	3.49
- 60	.679	.848	1.045	1.296	1.671	2.000	2.099	2.390	2.600	2.915	3.232	3.46
80	.678	.846	1.043	1.292	1.664	1,990	2.068	2.374	2.639	2.887	3.195	3.41
100	.677	.845	1.042	1.290	1.660	1.984	2.081	2.364	2.626	2.871	3.174	3.39
1000	.675	.842	1.637	1.282	1.646	1,962	2.056	2.330	2.581	2.813	3.096	3.30
- 00	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2,807	3.091	3.29
	50%	60%	70%	80%	90%	96%	96%	98%	90%	99,5%	99.8%	99,99

< □ > 432016-44 AM < Ξ > < Ξ > Ξ のへで

Introduction 0000	Calculating Power 000000●0	Cluster Designs	Conclusion O

Minimum detectable effect

- Assume estimate ATE with OLS, we can state a MDE by setting $\alpha = 0.05$, $\kappa = 0.80$, sample size of *N*, proportion assigned to treatment group *P*, and estimate $\widehat{\sigma^2}$
- The minimum detectable effect (MDE) is

$$MDE = [t_{\alpha} + t_{(1-\kappa)}] \times \sqrt{\frac{1}{P(1-P)} \frac{\sigma^2}{N}}$$
(6a)
= "t-distance" × SE(β) (6b)

Introduction 0000 Calculating Power

Cluster Designs

Including covariates in the analysis can improve your power

Covariates can reduce the MSE (σ^2) of your regression

$$Y_i = \alpha + Z\beta + (\epsilon_i); \epsilon_i \sim N(0; \sigma^2)$$
(7a)

$$= \alpha + Z\beta_1 + (X\beta_2 + \epsilon_i^*); \epsilon_i^* \sim N(0; (\sigma^*)^2)$$
(7b)

If $eta_2
eq 0$, then $(\sigma^*)^2 < \sigma^2$

Introduction	

Calculating Power

Cluster Designs ●00000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Level of randomization/assignment

- Individual
- Group or cluster
 - Classroom
 - School
 - School district
 - Village/city

Introduction	Calculating Power	Cluster Designs	Conclusion
0000		0●0000	O
Why clustered o	designs?		

• Some treatments can only be at cluster level (Classroom, Lab, Small group)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Need to account for interference/SUTVA violation

Introduction	Calculating Power	Cluster Designs	Conclusion
0000		00●000	O

Power in clustered designs

- Within-group correlation in outcomes reduces power
 - Common background, information, omitted factors
 - More power the more unrelated the people in the group
- ρ is the intra-cluster correlation (ICC)
- Need to adjust power calculation with a design effect. For a given sample size, clustering in groups of size m, the MDE increases by $\sqrt{1 + \rho(n-1)}$
- Usually the number of groups matters more than the number of individuals
- Issues:
 - Individual randomization gives bigger sample, more power
 - Beware of nesting even when assigning at individual level

Introduction 0000 Calculating Powe

Cluster Designs

Conclusion 0

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Minimum detectable effect for a clustered design

Assume J groups each of size n

$$ClusterMDE = (t_{\alpha} + t_{(1-\kappa)}) \times \sqrt{\rho + \frac{1-\rho}{n}} \frac{\sigma}{\sqrt{P(1-P)J}}$$
(8a)
= "t-distance" × SE(β) (8b)

Note the Cluster MDE decreases more rapidly in J than in n

Introduction	Calculating Power	Cluster Designs	Conclusion
0000		○○○○●○	O
Resources for P	ower		

- The Randomization Toolkit
- Alex Coppock's "10 Things to Know about Power" on EGAP

Introduction	Calculating Power	Cluster Designs	Conclusion
0000	00000000	○○○○○●	O
Calculating power requirements			

- - Decide the null hypothesis
 - Set a significance level
 - Set power requirement
 - Decide sample size and proportion allocated to treatment, estimate outcome variance, include covariates
 - Calculate MDE
 - See if study will detect a minimum effect size you need

Introduction	Calculating Power	Cluster Designs	Conclusion
0000		000000	•

Ethical considerations

- Consider ethics and fairness of using other people's time for your own research
- Consider the costs and funding sources; opportunity cost for wasted resources
- Be clear about the time requirements for doing a careful study and how much of everyone's time you will be using

• Be transparent in conducting and reporting your analysis