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Simple Linear Regression
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Introduction

Beer data:
The dataset contains statistics about beers alcohol content and the
number of calories in 12-ounce beer.
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Motivation

Is there a relationship between beers alcohol content and calories?

How accurately can we estimate the effect of beers alcohol content on
calories?

Is the relationship linear?
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Motivation

Note: There is one beer in the list that is actually considered a non-alcoholic
beer—O’Doul’s. This could be a potential outlier, so we remove this data point.
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Simple Linear Regression

Given the independent data (x1, y1), (x2, y2), ..., (xn, yn), the simple
linear regression fits the data with the following model:

E (y) = β0 + β1x

where x is called independent/predictor/explanatory variable, y is
called dependent/response variable.

The parameters β0 and β1 are estimated using the Least Square(LS)
method, which is to minimize the sum of squares:

(y1 − β0 − β1x1)2 + ...+ (yn − β0 − β1xn)2
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Simple Linear Regression

Based on the LSE β̂0 and β̂1, the prediction of y at X = xi can be
derived as ŷi = β̂0 + β̂1xi .

The residual for the ith data point is ei = yi − ŷi . So the minimized
sum of squares is called the Residual Sum of Squares (RSS), which is:

RSS = (y1 − β̂0 − β̂1x1)2 + ...+ (yn − β̂0 − β̂1xn)2

Then the model with smaller RSS will be the better fit.
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Simple Linear Regression
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Simple Linear Regression

Figure: Example of contour and three-dimensional plots of the RSS.
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Simple Linear Regression

By taking the derivative of RSS with respect to β0 and β1, the regression
equation (also known as best fitting line or least squares line) can be
derived with slope being β̂1 and the y-intercept being β̂0.

β̂1 = SSXY
SSx

β̂0 = ȳ − β̂1x̄

where

SSxy =
∑

(x − x̄)(y − ȳ)

SSx =
∑

(x − x̄)2

SSy =
∑

(y − ȳ)2
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Simple Linear Regression

Bias and Unbiasedness:
The bias of an estimator means it might over or under estimate the
truth averaging the corresponding estimates for a large number of
data sets. An unbiased estimator does not systematically over- or
under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates.

Standard error:
The standard error of an estimator is standard deviation of the
estimator, describing its variation due to repeated sampling. Denoted
as SE (β̂0) and SE (β̂1)

Confidence interval
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Simple Linear Regression

Hypothesis testing — t-test

Hypothesis:

H0 : β1 = 0,Ha : β1 6= 0

Test statistic:

t = β̂1

SE(β̂1)

null distribution: Under H0, the test statistic follows a t distribution
with degrees of freedom n − 2.
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Simple Linear Regression

rejection rule:

critical value approach:
If the test statistic derived from the observed data t is larger than
tcritical , then the null hypothesis should be rejected.
P-value approach:
p-value is the probability of observing any value equal to |t| or larger,
under the null hypothesis, which is β1 = 0

p − valuetwo−sided = 2 ∗ P(T > |t||H0)

If p-value is less or equal to the predefined significance level, then the
null hypothesis should be rejected.
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Simple Linear Regression

Beer Example:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 25.031 24.999 1.001 0.350038
Beers alcohol content 26.319 4.432 5.938 0.000577∗∗∗

How to interpret the results?
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Simple Linear Regression

R implementation:

lm() function can build the linear regression for you!

Do you know how to access to the model fit?
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Simple Linear Regression

Assessing the model fit(REVIEW):

Partitioning Variation: Break down difference between observation
and grand mean into two parts:

Yi − Ȳ = (Ŷi − Ȳ ) + (Yi − Ŷi ) (1)

Yi − Ȳ : Total deviation.

Ŷi − Ȳ : Deviation of fitted value around ground mean.

Yi − Ŷi : Deviation around fitted value.
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Simple Linear Regression

Sums of Squares:
Square both sides, and the cross-terms in (Ŷi − Ȳ ) ∗ (Yi − Ŷi ) will cancel.∑

i

(Yi − Ȳ )2 =
∑
i

(Ŷi − Ȳ )2 +
∑
i

(Yi − Ŷi )
2 (2)

∑
i (Yi − Ȳ )2: Sum of squares total.(SSTO)∑
i (Ŷi − Ȳ )2: Sum of squares regression.(SSR)∑
i (Yi − Ŷi )

2: Residual sum of squares/RSS (Sum of squares
error/SSE)
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Simple Linear Regression

Assessing the model fit:

R-square:
R2 measures the proportion of variability in Y that can be explained
using X.

R2 = 1− RSS
SST ,SST =

∑n
i=1(yi − ȳ)2

R2 ∈ (0, 1).

An R2 statistic that is close to 1 indicates that a large proportion of
the variability in the response has been explained by the regression.
A number near 0 indicates that the regression did not explain much of
the variability in the response; this might occur because the linear
model is wrong, or the inherent error σ2 is high, or both.
For simple linear regression, R2 = r2 where r is the Pearson correlation
coefficient between X and Y .
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Simple Linear Regression

Assessing the model fit:

Residual standard error (RSE):
Square root of the variance of the residuals, which is the average
amount that the response will deviate from the true regression line.

RSE =
√

RSS
n−2

Lower values of RSE indicate better fit.
Advantages:

Can be interpreted as the standard deviation of the unexplained
variance, and has the useful property of being in the same units as the
response variable.
RSE is a good measure of how accurately the model predicts the
response, and it is the most important criterion for fit if the main
purpose of the model is prediction.
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Simple Linear Regression

Assessing the model fit:

Beer Example:

Quantity Value

Residual standard error(RSE) 15.64
R2 0.8344

Disadvantage: R-square can only increase as predictors are added to
the regression model. This increase is artificial when predictors are
not actually improving the models fit.
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Simple Linear Regression

Assessing the model fit

3. Adjusted R-square

Adjusted R2 = 1− RSS/dfRSS
SST/dfSST

Advantage: Adjusted R-squared will decrease as predictors are added
if the increase in model fit does not make up for the loss of degrees of
freedom. Likewise, it will increase as predictors are added if the
increase in model fit is worthwhile.
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Simple Linear Regression

Assessing the model fit

4. F-test

The F-test evaluates the null hypothesis that all regression coefficients
are equal to zero versus the alternative that at least one is not.
F-test determines whether the proposed relationship between the
response variable and the set of predictors is statistically reliable and
can be useful when the research objective is either prediction or
explanation.
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Simple Linear Regression

Hypothesis test — F test:
We can test all the coefficients together.

Hypothesis:

H0 : β1 = β2 = ... = βp = 0
Ha: Not all βj = 0, j = 1, ..., p

Test statistic:

F = (SST−RSS)/p
RSS/(n−p−1)

null distribution: Under H0, the test statistic follows a F distribution
with degrees of freedom p and n − p − 1.
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Simple Linear Regression

Beer Example:

Quantity Value

Adjusted R2 0.8107
F-statistic 35.26
p-value 0.0005768
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Simple Linear Regression

How can we use the estimated model—Prediction

Find the number of calories when the alcohol content is 6.50%.
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Simple Linear Regression

Solution:
ŷ = 25.0 + 26.3 ∗ (6.50) = 196 calories
If you are drinking a beer that is 6.50% alcohol content, then it is
probably close to 196 calories. Notice, the mean number of calories is
170 calories. This value of 196 seems like a better estimate than the
mean when looking at the original data. The regression equation is a
better estimate than just the mean.
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Simple Linear Regression

Find the number of calories when the alcohol content is 2.00%.
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Simple Linear Regression

Solution:
ŷ = 25.0 + 26.3 ∗ (2.00) = 78 calories
If you are drinking a beer that is 2.00% alcohol content, then it has
probably close to 78 calories. This doesn’t seem like a very good
estimate. This estimate is what is called extrapolation. It is not a
good idea to predict values that are far outside the range of the
original data. This is because you can never be sure that the
regression equation is valid for data outside the original data.
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Question?
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Potential problems
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Simple Linear Regression

Assumptions:

Linearity: There is linear relationship between beers alcohol content
and calories.

Independence: All calorie values are independent from each other.

Homoscedasticity: The calorie values are homoscedastic.

Normality: The distribution for each calorie value is normally
distributed for every value of alcohol content in the beer.
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Non-linearity

Problem: Sometimes a linear relationship between response variables and
predictors does not provide a good fit, even if large R2 is achieved, such as
following plot, then we need to introduce polynomial terms, such as
quadratic term, cubic term, etc.

Lin Cong (UCR) Regression and Correlation October 14, 2019 33 / 67



Non-linearity

Diagnosis: How to decide if we should include non-linear terms?
Residual Plot (observed versus predicted values/residuals versus predicted
values)
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Non-linearity

Solution:
If the residual plot indicates that there are non-linear associations in the
data:

A simple approach is to use non-linear transformations of the
predictors, such as log(x),

√
x , x2 in the regression model.

Add another regressor that is a nonlinear function of one of the other
variables.

Add some entirely different independent variable that explains or
corrects for the nonlinear pattern or interactions among variables.

Note: Be careful for the over-fitting problem for the 2nd and 3rd solutions.
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Correlation of error terms

Problem: Violations of independence are potentially very serious in time
series regression models.

Plots of residuals from simulated time series data sets generated with different levels of
correlation between error terms for adjacent time points.
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Correlation of error terms

Influence:
The estimated standard errors will tend to underestimate the true
standard errors. So the confidence and prediction intervals will be
narrower.

Diagnosis:
Residual time series plot (residuals vs row number) and a table or plot
of residual autocorrelations.

Solution:
Time series analysis, linear mixed effects models, etc.
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Heteroscedasticity

Problem: Non-constant variance of error terms:

Red line: smooth fit to the residuals to make it easier to identify a trend. Blue line:
outer quantiles of the residuals, and emphasize patterns.
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Heteroscedasticity

Beer example:
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Heteroscedasticity

Influence:
Confidence intervals become too wide or too narrow; Giving too much
weight to a small subset of the data where the error variance was
largest when estimating coefficients.

Diagnosis:
Residuals versus predicted values plot.

Solution—Transformation:
Transform the response y using a concave function such as log(y) or√
y . Such a transformation results in a greater amount of shrinkage

of the larger responses, leading to a reduction in heteroscedasticity.
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Non-Normality

Influence:
Problematic for determining whether model coefficients are
significantly different from zero and for calculating confidence
intervals for forecasts.

Diagnosis:
QQ-plot(normal probability plot/normal quantile plot of the
residuals):
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Non-Normality

Tests for normality:
The Kolmogorov-Smirnov test, the Shapiro-Wilk test, the
Jarque-Bera test, and the Anderson-Darling test.

Potential reasons:
Distributions of the dependent and/or independent variables are
themselves significantly non-normal.
The linearity assumption is violated.

Solution:
Transformation: Transform the response y using log(y),

√
y , 1

Y , or

2arcsine
√
Y . Also some transformation method, such as Box-Cox

transformation.
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Question?
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Correlation
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Correlation

A correlation exists between two variables when the values of one variable
are somehow associated with the values of the other variable.
When there is a pattern in the data, then there is a correlation in the data.
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Correlation

Linear correlation coefficient(Pearson correlation coefficient):
Describes the strength of the linear relationship between the two
variables.

Notation:
Population correlation coefficient:ρ
Sample linear correlation coefficient: r
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Correlation

Expectation:
E (X ) = µ(X )

Variance:
Var(X ) = σ(X )2 = E [(X − µ(X ))2] = E [X 2]− [E (X )]2

Covariance:
Cov(X ,Y ) = E [(X − µ(X ))(Y − µ(Y ))] = E (XY )− E (X )E (Y )

Correlation coefficient:
ρ(X ,Y ) = Cov(X ,Y )

σ(X )σ(Y )
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Correlation

Sample correlation coefficient:
r = Cov(X ,Y )

SSxy )
√

SSxSSy

where
SSx =

∑
(x − x̄)2

SSy =
∑

(y − ȳ)2

SSxy =
∑

(x − x̄)(y − ȳ)

Pearson correlation coefficient is used when both variables X and Y
are continuous.
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Correlation

Interpretation:
r ∼ (−1, 1)
r = 1 means there is a perfect negative linear correlation.
r = 1 means there is a perfect positive correlation.
The closer r is to 1 or 1, the stronger the linear correlation. The
closer r is to 0, the weaker the correlation.
Note: r = 0 does not mean there is no correlation. It just means there
is no linear correlation. There might be a very strong curved pattern.
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Correlation

Beer example:

X: alcohol content in the beer

Y: calories in 12 ounce beer

Pearson correlation coefficient: 0.913
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Correlation

Causation:

One common mistake people make is to assume that because there is
a correlation, then one variable causes the other.

For example, we can not say amount of alcohol in the beer causes it
to have a certain number of calories. The fermentation of sugars is
what causes the alcohol content.
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Correlation

Example: A study showed a strong linear correlation between per capita
beer consumption and teachers salaries. Does giving a teacher a raise
cause people to buy more beer? Does buying more beer cause teachers to
get a raise?
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Correlation

Solution:
There is probably some other factor causing both of them to increase at
the same time. Think about this: In a town where people have little extra
money, they wont have money for beer and they wont give teachers raises.
In another town where people have more extra money to spend it will be
easier for them to buy more beer and they would be more willing to give
teachers raises.
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Correlation

Explained Variation:
Think of the beer example, Some of the variation in calories is due to
alcohol content and some is due to other factors. How much of the
variation in the calories is due to alcohol content?
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Correlation

Coefficient of determination:

r2 =
∑

(ŷ−ȳ)2∑
(y−ȳ)2

1. r2 is the proportion of the variation that is explained by the model.
2. For simple linear regression, r2 = (r)2
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Correlation

Beer example:

r2 = 0.8344
r = 0.913
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Question?
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Inference
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Inference

Hypothesis Test for Correlation:

1. State the random variables:
x = independent variable
y = dependent variable

2. State the null and alternative hypotheses and the level of
significance:
H0 : ρ = 0 (no correlation)
HA : ρ 6= 0 (correlation)
or
HA : ρ > 0 (positive correlation)
HA : ρ < 0 (negative correlation)
State significance level α.
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Inference

3. State and check the assumptions for the hypothesis test.

Independence:
All the (x, y) pairs are uncorrelated with each other.
Normality:
(X, Y) follows bivariate normal distribution.

4. Define test statistic:

t = r
√

n−2
1−r2

Under H0, the test statistic has a Student ′st-distribution with degree
of freedom n − 2. This holds approximately in case of non-normal
observed values if sample sizes are large enough.
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Inference

5. Decision rules:

critical value based:

rcritical = t
n−2+t2

p-value based:

p − valuetwo−sided = 2 ∗ P(T > |t||H0)

6. Interpretation:
The conclusion for a hypothesis test is that you either have enough
evidence to show HA is true, or you do not have enough evidence to
show HA is true.
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Inference

Beer Example:

t = 5.9384

p-value = 0.0002884
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Correlation and Regression Analysis Example

The following table contains randomly selected high temperatures at
various cities on a single day and the elevation of the city.

Elevation (in feet) 7000 4000 6000 3000 7000 4500 5000

Temperature (F) 50 60 48 70 55 55 60
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Inference

1. What are the random variables?

2. Find a regression equation for elevation and high temperature on a
given day.

3. Find the residuals and create a residual plot.

4. Find the correlation coefficient and coefficient of determination
and interpret both.

5. Is there enough evidence to show a negative correlation between
elevation and high temperature? Test at the 5% level.
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Question?
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For hands on help with your analyses, stop by our drop in hours or
sign up for a consultation.

Welcome to the workshops in the Fall quarter!

If you have any workshop requests, now is the time to ask! We will be
setting our fall schedule soon.

For more details, visit our website:
GradQuant.ucr.edu
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Thank You
Welcome to GradQuant
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