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Descriptive Statistics

Lin Cong (UCR) Multidimensional Data Analysis November 4, 2019 3 / 80



Introduction

Advertising data:
The dataset contains statistics about the sales of a product in 200
different markets, together with advertising budgets in each of these
markets for different media channels: TV, radio and newspaper. The sales
are in thousands of units and the budget is in thousands of dollars.
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Descriptive Statistics

Numerical summary of the descriptive statistics for all variables:
summary() function

Correlation matrix:
corr() function

Plots for univariate and bivariate cases can be applied for
multidimensional data separately:
hist() function, plot() function.

Rotating Scatterplot:
scatterplot3d() function

Scatterplot Matrix:
pairs() function
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Multiple Linear Regression
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Motivation

Is there a relationship between advertising budget and sales?

How accurately can we estimate the effect of different media on sales?

Is the relationship linear?

Is there synergy among the advertising media? Perhaps spending
$50,000 on television advertising and $50,000 on radio advertising
results in more sales than allocating $100,000 to either television or
radio individually. In marketing, this is known as a synergy effect,
while in statistics it is called an interaction effect.
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Multiple Linear Regression

Model:

Given the independent data
(x11, x12, ..., x1p, y1), (x21, x22, ..., x2p, y2), ..., (xn1, xn2, ..., xn3, yn), the
multiple linear regression fits the data with the following model:

E (y) = β0 + β1x1 + β2x2 + ...+ βpxp

The least squares estimates(LSE) of the coefficients are:

β̂0, β̂1, ..., β̂p = argminβ0,β1,...,βpRSS =

argminβ0,β1,...,βp
∑n

i=1(yi − β̂0 − β̂1xi1 − β̂2xi2 − ...− β̂pxip)2
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Multiple Linear Regression

Bias and Unbiasedness:
The bias of an estimator means it might over or under estimate the
truth averaging the corresponding estimates for a large number of
data sets. An unbiased estimator does not systematically over- or
under-estimate the true parameter. The property of unbiasedness
holds for the least squares coefficient estimates.

Standard error:
The standard error of an estimator is standard deviation of the
estimator, describing its variation due to repeated sampling. Denoted
as SE (β̂i ).

Confidence interval
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Multiple Linear Regression

Hypothesis testing — t-test

Hypothesis:

H0 : βi = 0,Ha : βi 6= 0, i = 1, ..., p

Test statistic:

t = β̂i
SE(β̂i )

null distribution: Under H0, the test statistic follows a t distribution
with degrees of freedom n − p − 1.
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Multiple Linear Regression

rejection rule:

critical value approach:
If the test statistic derived from the observed data t is larger than
tcritical , then the null hypothesis should be rejected.
P-value approach:
p-value is the probability of observing any value equal to |t| or larger,
under the null hypothesis, which is β1 = 0

p − valuetwo−sided = 2 ∗ P(T > |t||H0)

If p-value is less or equal to the predefined significance level, then the
null hypothesis should be rejected.
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Multiple Linear Regression

R implementation:

Simply use the lm function.

How do we interpret the results?
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Multiple Linear Regression

Note: cor(TV, radio) = 0.0548, cor(TV, newspaper) = 0.0567, cor(radio, newspaper) =
0.3541.
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Multiple Linear Regression

Assessing the model fit(REVIEW):

Partitioning Variation: Break down difference between observation
and grand mean into two parts:

Yi − Ȳ = (Ŷi − Ȳ ) + (Yi − Ŷi ) (1)

Yi − Ȳ : Total deviation.

Ŷi − Ȳ : Deviation of fitted value around ground mean.

Yi − Ŷi : Deviation around fitted value.
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Multiple Linear Regression

Sums of Squares:
Square both sides, and the cross-terms in (Ŷi − Ȳ ) ∗ (Yi − Ŷi ) will cancel.∑

i

(Yi − Ȳ )2 =
∑
i

(Ŷi − Ȳ )2 +
∑
i

(Yi − Ŷi )
2 (2)

∑
i (Yi − Ȳ )2: Sum of squares total.(SSTO)∑
i (Ŷi − Ȳ )2: Sum of squares regression.(SSR)∑
i (Yi − Ŷi )

2: Residual sum of squares/RSS (Sum of squares
error/SSE)

Lin Cong (UCR) Multidimensional Data Analysis November 4, 2019 15 / 80



Multiple Linear Regression

Assessing the model fit

1. RSE

RSE =
√

RSS
n−p−1

2. R-square

Quantity Value

Residual standard error(RSE) 1.686
R2 0.897

Disadvantage: R-square can only increase as predictors are added to
the regression model. This increase is artificial when predictors are
not actually improving the model’s fit.
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Multiple Linear Regression

Assessing the model fit

3. Adjusted R-square

Adjusted R2 = 1− RSS/dfRSS
SST/dfSST

Advantage: Adjusted R-squared will decrease as predictors are added
if the increase in model fit does not make up for the loss of degrees of
freedom. Likewise, it will increase as predictors are added if the
increase in model fit is worthwhile.
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Multiple Linear Regression

Assessing the model fit

4. F-test

The F-test evaluates the null hypothesis that all regression coefficients
are equal to zero versus the alternative that at least one is not.
F-test determines whether the proposed relationship between the
response variable and the set of predictors is statistically reliable and
can be useful when the research objective is either prediction or
explanation.
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Multiple Linear Regression

Hypothesis test — F test:
We can test all the coefficients together.

Hypothesis:

H0 : β1 = β2 = ... = βp = 0
Ha: Not all βj = 0, j = 1, ..., p

Test statistic:

F = (SST−RSS)/p
RSS/(n−p−1)

null distribution: Under H0, the test statistic follows a F distribution
with degrees of freedom p and n − p − 1.
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Multiple Linear Regression

Advertising Example:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 2.939 0.312 9.422 < 2e − 16∗∗∗

TV 0.046 0.001 32.809 < 2e − 16∗∗∗

Radio 0.189 0.009 21.893 < 2e − 16∗∗∗

newspaper -0.001 0.006 -0.177 0.86
F-statistic 570.3
p-value < 2.2e − 16∗∗∗
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Multiple Linear Regression

Hypothesis test — F test:
We can also test part of the coefficients.

Hypothesis:

H0 : βp−q+1 = β2 = ... = βp = 0
Ha: Not all the above βj = 0, j = p − q + 1, ..., p

Test statistic:

F = (RSS0−RSS)/q
RSS/(n−p−1)

where RSS0 is residual sum of squares of the model that uses all the
variables except those last q.

null distribution: Under H0, the test statistic follows a F distribution
with degrees of freedom q and n − p − 1.
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Multiple Linear Regression

Advertising Example:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 7.032 0.458 15.36 < 2e − 16∗∗∗

TV 0.048 0.003 17.67 < 2e − 16∗∗∗
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Multiple Linear Regression

Model Selection:

Criterions:
Akaike information criterion(AIC), Bayesian information
criterion(BIC), Mallow’s Cp, adjusted R2, etc.

Procesures:

Forward Selection (RSS based)
Backward Selection (p-value based)
Stepwise Selection (combination of forward and backward)
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Multiple Linear Regression

Model Selection:

Forward Selection (RSS based):
Begin with the null model-a model that contains an intercept but no
predictors. We then fit p simple linear regressions and add to the null
model the variable that results in the lowest RSS. Then add to that
model the variable that results in the lowest RSS for the new
two-variable model. This approach is continued until some stopping
rule is satisfied.
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Multiple Linear Regression

Model Selection:

Backward Selection (p-value based):
Start with all variables in the model, and remove the variable with the
largest p-value-that is, the variable that is the least statistically
significant. The new (p - 1)-variable model is fit, and the variable
with the largest p-value is removed. This procedure continues until a
stopping rule is reached.
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Multiple Linear Regression

Model Selection:

Stepwise Selection (combination of forward and backward):
Start with no variables in the model, and as with forward selection,
add the variable that provides the best fit. We continue to add
variables one-by-one. If at any point the p-value for one of the
variables in the model rises above a certain threshold, then remove
that variable from the model. Continue to perform these forward and
backward steps until all variables in the model have a sufficiently low
p-value, and all variables outside the model would have a large
p-value if added to the model.
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Multiple Linear Regression

Qualitative variables:

Also known as factors, discrete/categorical variables.

Levels of qualitative predictors: possible values of the predictors

Dummy coding:

0-1 coding for two level predictors:

xi =

{
1, if the ith person is female.

0, if the ith person is male.

yi = β0 + β1xi + εi =

{
β0 + β1 + εi , if the ith person is female.

β0 + εi , if the ith person is male.
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Multiple Linear Regression

Dummy coding:

Sum to zero contrast:

xi =

{
1, if the ith person is female.

−1, if the ith person is male.

yi = β0 + β1xi + εi =

{
β0 + β1 + εi , if the ith person is female.

β0 − β1 + εi , if the ith person is male.
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Multiple Linear Regression

Comparison of dummy coding:

LSE of balance on gender using Credit data set(0-1 coding).

LSE of balance on gender using Credit data set(sum to zero).
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Multiple Linear Regression

Three -level qualitative variables:
For example: ethnicity(Asian/Caucasian/African American.)
multiple 0-1 dummy coding:

xi1 =

{
1, if the ith person is Asian.

0, if the ith person is not Asian.

xi2 =

{
1, if the ith person is Caucasion.

0, if the ith person is not Caucasion.

yi = β0+β1xi1+β2xi2+εi =


β0 + β1 + εi , if the ith person is Asian.

β0 + β2 + εi , if the ith person is Caucasion.

β0 + εi , if the ith person is African American.

where β0 is the baseline.
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Multiple Linear Regression

synergy effect(interaction effect)

Take the advertising data set as an example, given a fixed budget of
$100,000, spending half on radio and half on TV may increase sales
more than allocating the entire amount to either TV or to radio.

In statistical language, spending money on radio advertising actually
increases the effectiveness of TV advertising, so that the slope term
for TV should increase as radio increases.

Let’s first have a look of it.
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Multiple Linear Regression

Linear regression with interactions:

E (y) = β0 + β1x1 + β2x2 + β3x1x2

Can you try to build this model in R?
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Multiple Linear Regression

Linear regression with interactions:

Estimate Std. Error t value Pr(> |t|)

(Intercept) 6.7500 0.2479 27.233 < 2e − 16∗∗∗

TV 0.0191 0.0015 12.699 < 2e − 16∗∗∗

Radio 0.0289 0.0089 3.241 0.0014
TVxRadio 0.0011 0.00005 20.727 < 2e − 16∗∗∗
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Multiple Linear Regression

Estimated model:

E (y) = 6.75 + 0.0191 ∗ x1 + 0.0289 ∗ x2 + 0.0011 ∗ x1x2

The R2 for this model is 0.9678, while the one for model without
interaction term is 0.8972.

An increase in TV advertising of $1,000 will result in increasing the
sales by (β1 + β3 ∗ Radiounits) ∗ 1000 = 19.1 + 1.1 ∗ Radiounits, an
increase in Radio advertising of $1,000 will result in increasing the
sales by (β2 + β3 ∗ TVunits) ∗ 1000 = 28.9 + 1.1 ∗ TVunits

hierarchical principle: if we include an interaction in a model, we
should also include the main effects, even if the p-values associated
with their coefficients are not significant.
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Question?
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Principle Component Analysis
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Principle Component Analysis

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in
the data set. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of
the original variables.
[Jolliffe,Pricipal Component Analysis, 2ndedition]
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Principle Component Analysis

Toy Example:
Consider the following 3D points

If each component is stored in a byte, we need 18 = 3 x 6 bytes.
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Principle Component Analysis

Actually, they are all the same point, scaled by a factor.

They can be stored using only 9 bytes (50% savings! Store one point (3
bytes) + the multiplying constants (6 bytes)
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Principle Component Analysis

Geometrical Interpretation:
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Principle Component Analysis

Geometrical Interpretation:
Consider a new coordinate system where one of the axes is along the
direction of the line:

In this coordinate system, every point has only one only one non-zero
coordinate: we only need to store the direction of the line (a 3 bytes
image) and the nonzero coordinate for each of the points (6 bytes).
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Principle Component Analysis

Introduction:
Suppose that we have a random vector X :

X =


X1

X2
...

Xp


With population variance-covariance matrix:

Var(X ) = Σ =


σ21 σ12 · · · σ1p
σ21 σ22 · · · σ2p

...
...

. . .
...

σp1 σp2 · · · σ2p


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Principle Component Analysis

Consider the linear combinations:

C1 = e11X1 + e12X2 + · · ·+ e1pXp

C2 = e21X1 + e22X2 + · · ·+ e2pXp
...

Cp = ep1X1 + ep2X2 + · · ·+ eppXp

Which can be generalized by Ci = eTi X , i = 1, ..., p

So, Yi has a population variance:

Var(Yi ) =
∑p

k=1

∑p
l=1 eikeilσkl = eTi Σei

And Yi and Yj have population covariance:

Cov(Yi ,Yj) =
∑p

k=1

∑p
l=1 eikejlσkl = eTi Σej
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Principle Component Analysis

The coefficients eij can be collected into a vector:

ei =


ei1
ei2
...

eip


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Principle Component Analysis

Goal:
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Principle Component Analysis

Procedure:

Find linear function of X , eT1 X with maximum variance.

Next find another linear function of X , eT2 X , uncorrelated with eT1 X
maximum variance.

Iterate until the pth linear function eTp X .
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Principle Component Analysis

Details: First principal component

The first principal component is the linear combination of x-variables
that has maximum variance (among all linear combinations). It
accounts for as much variation in the data as possible.

Specifically we define coefficients for the first component in such a
way that its variance is maximized, subject to the constraint that the
sum of the squared coefficients is equal to one. This constraint is
required so that a unique answer may be obtained.

Mathematically,
Maximize

Var(C1) =
∑p

k=1

∑p
l=1 e1ke1lσkl = eT1 Σe1

subject to the constraint

eT1 e1 =
∑p

i=1 e21j = 1
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Principle Component Analysis

Details: Second principal component

The second principal component is the linear combination of
x-variables that accounts for as much of the remaining variation as
possible, with the constraint that the correlation between the first and
second component is 0.

Mathematically,
Maximize

Var(C2) =
∑p

k=1

∑p
l=1 e2ke2lσkl = eT2 Σe2

subject to the constraint

eT2 e2 =
∑p

i=1 e22j = 1

Along with the additional constraint that these two components are
uncorrelated.

Cov(C1,C2) =
∑p

k=1

∑p
l=1 e1ke2lσkl = eT1 Σe2 = 0
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Principle Component Analysis

Details: The ith principal component

All subsequent principal components are linear combinations that
account for as much of the remaining variation as possible and they
are not correlated with the previous principal components.

Mathematically,
Maximize

Var(Ci ) =
∑p

k=1

∑p
l=1 eikeilσkl = eTi Σei

subject to the constraint

eTi ei =
∑p

i=1 e2ij = 1

Along with the additional constraint.

Cov(C1,Ci ) =
∑p

k=1

∑p
l=1 e1keilσkl = eT1 Σei = 0

...
Cov(Ci−1,Ci ) =

∑p
k=1

∑p
l=1 e(i−1)keilσkl = eT(i−1)Σei = 0
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Principle Component Analysis

Let λ1 through λp denote the eigenvalues of the variance-covariance
matrix Σ. These are ordered so that λ1 has the largest eigenvalue and
λp is the smallest.

λ1 ≥ λ2 ≥ · · · ≥ λp
Let the vectors e1 through ep

e1, e2, · · · , ep
denote the corresponding eigenvectors. It turns out that the elements
for these eigenvectors are the coefficients of our principal components.
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Principle Component Analysis

Methodology:
Constrained maximization - Lagrange multipliers
We maximize the function eTi Σei − λ(eTi ei − 1) with respect to ei by
differentiating with respect to ei .

This will result in Σei = λiei

This can be recognizable as an eigenvector equation where ei is an
eigenvector of Σ and λi is the associated eigenvalue.
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Principle Component Analysis

Methodology:

Var(Ci ) = eTi Σei = eTi λiei = λie
T
i ei = λi

So the varaince for Ci is just the eigenvalue λi , then we should choose λi
to be as big as possible.
Then the solution to:

Σe1 = λ1e1

is the 1st principal component of X.

Lin Cong (UCR) Multidimensional Data Analysis November 4, 2019 52 / 80



Principle Component Analysis

Methodology:

The second PC, eT2 X maximizes eT2 Σe2 subject to being uncorrelated
with eT1 X .

The uncorrelation constraint can be expressed using any of these
equations:

Cov(eT1 X , eT2 X ) = eT1 Σe2 = eT2 Σe1 = eT2 λ1e1 = λ1eT2 e1 = 0
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Principle Component Analysis

Methodology:
By combining the uncorrelation constraint to the previous constraint, then
we just need to maximize the following function to get the e2:

eT2 Σe2 − λ2(eT2 e2 − 1)− φeT2 e1

By differentiating the function w.r.t the e2, and set the derivative equals
to 0, then we have φ must equal to 0, then what is left is:

Σe2 = λ2e2

So similar to the first PC, we choose e2 to be the eigenvector associated
with the second largest eigenvalue to get the second PC of X , namely
eT2 X .
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Principle Component Analysis

Methodology:
This process can be repeated for k = 1, ..., p yielding up to p different
eigenvectors of Σ along with the corresponding eigenvalues λ1, ..., λp.
Furthermore, the variance of each of the PC’s are given by:

Var(eTk X ) = λk , k = 1, ..., p
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Principle Component Analysis

Dimension reduction
Now, think of the PC as projections of the of X, since the projections are
uncorrelated, the percentage of variance accounted for by retaining the
first q PC’s is given by:

∑q
k=1 λk∑p
k=1 λk

∗ 100
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Principle Component Analysis

Practical Principle Component Analysis Procedure

Sample covariance matrix:
An unbiased estimator for the covariance matrix of X:

S = 1
n−1XTX

where X is n ∗ p data matrix, with (i , j)th element being xij − x̄j
(centered matrix).

Construct the matrix A by combining the p eigenvectors of S (or
eigenvectors of XTX ), then we can define a matrix of PC scores:

Z = XA

For dimension reduciton:
Selecting the q eigenvectors corresponding to the q largest
eigenvalues of S when forming A, then Z is an “optimal”
q-dimensional projection of X.
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Principle Component Analysis

How to find the eigenvectors & eigenvalues — singular value
decomposition(SVD):

S = ATΛA

where A is a matrix consisting of the eigenvectors of S and Λ is a
diagonal matrix whose diagonal elements are the eigenvalues
corresponding to each eigenvector.

Based on the SVD, how to do dimension reduciton?
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Principle Component Analysis

Sample:

Figure: Gaussian sample
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Principle Component Analysis

Figure: Gaussian sample with eigenvectors of sample covariance matrix
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Principle Component Analysis

Figure: Projected sample
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Principle Component Analysis

Figure: PC dimensionality reduction
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Principle Component Analysis

Figure: PC dimensionality reduction
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Principle Component Analysis

PCA in linear regression:
Advantages:

Identification and elimination of multicolinearities in the data.

Reduction in the dimension of the input space leading to fewer
parameters and easier regression.

The variance of the regression coefficient estimator is minimized by
the PCA choice of basis.
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Principle Component Analysis

A simulation example:

X ∼ N(

(
2
5

)
,

(
4.5 −1.5
−1.5 1.0

)
)

Model with no noise(no colinearity):

Y = X

(
5 −1
2

)
,

which means Y = 5 +−1 ∗ X1 + 2 ∗ X2

Model with noise(colinearity):
Add another predictor X3 = 0.8 ∗ X1 + 0.5 ∗ X2

Lin Cong (UCR) Multidimensional Data Analysis November 4, 2019 65 / 80



Principle Component Analysis

Linear Relationship with No Colinearity:

Figure: Noiseless Linear Relationship
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Principle Component Analysis

Linear Relationship with No Colinearity:

Figure: Noiseless Planar Relationship
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Principle Component Analysis

For the colinear data, it is not possible to plot it.

When PCA is applied to the design matrix of rank q less than p (the
number of positive eigenvalues discovered) is equal to q (the true
rank of the design matrix).

In this example, the rank of design matrix is rank 2, so the resulting
projection will be in two dimensions.
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Principle Component Analysis

Figure: Projection of multi-colinear data onto first two PC’s
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Principle Component Analysis

If we take the standard regression model:

Y = X ∗ β + ε

The PCA rotation of X :

Z = X ∗ A

Rewrite the regression model in terms of the PC’s:

Y = Z ∗ γ + ε

Consider the reduced model:

Y = Zq ∗ γq + εq
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Principle Component Analysis

A is orthogonal, then rewrite:

Xβ = XAATβ = Zγ

where γ = ATβ.
Using least squares (or ML) to learn β̂ = Aγ̂ is equivalent to learning β̂
directly.
So the least square estimate γ̂ is:

γ̂ = (ZTZ )−1ZTY

And,

β̂ = A(ZTZ )−1ZTY
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Principle Component Analysis

Disadvantage:

PCA assumes that the input data is real and continuous.

PCA assumes approximate normality of the input space distribution.
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Principle Component Analysis

Simple implementation:
We will use the Breast Cancer Wisconsin dataset. There are 32 variables in
total: ID, diagnosis and ten distinct (30) features.
The mean, standard error, and “worst” or largest (mean of the three
largest values) of these features were computed for each image, resulting
in 30 features. For instance, Variable 3 is Mean Radius, Variable 13 is
Radius SE, Variable 23 is Worst Radius.
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Principle Component Analysis

For PCA, simply use the prcomp() function!
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Question?
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Discussion
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Discussion

1. Dimension reduction: Factor analysis

2. High-dimensional data analysis:

Multivariate Analysis of Variance (MANOVA)

Repeated Measures Analysis

Discriminant Analysis

Cluster Analysis
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Question?
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For hands on help with your analyses, stop by our drop in hours or
sign up for a consultation.

Welcome to the workshops in the Fall quarter!

If you have any workshop requests, now is the time to ask! We will be
setting our fall schedule soon.

For more details, visit our website:
GradQuant.ucr.edu
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Thank You
Welcome to GradQuant
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