Requirements for Seminar

- Applications
 - Chrome (website: c9.io)
- GradQuant Resources
 - <u>http://gradquant.ucr.edu/workshop-resources/</u>
- Audience
 - No programming experience.
 - Never used Java.

Java Fundamentals

Presented by GradQuant Steven Jacobs

Acknowledgement: Used some ideas from:

Introduction to Python and programming

Michael Ernst UW CSE 190p Summer 2012

Who should attend?

- No programing experience.
- Never used Java.
- If you came to Python Fundamentals, that's okay
 - This will follow a similar pattern but using Java code

Objectives

- Introduce programming concepts.
- Review Java syntax.
- Review available development tools.
- Create and compile a Java script
- Show more resources

All of science is reducing to computational data manipulation

- Astronomy: High-resolution, high-frequency sky surveys (SDSS, LSST, PanSTARRS)
- Biology: lab automation, high-throughput sequencing,
- Oceanography: high-resolution models, cheap sensors, satellites

Example: Assessing treatment efficacy

	Α	В	С	D	E	F	G	Н		J
1	fu_2wk	fu_4wk	fu_8wk	fu_12wk	fu_16wk	fu_20wk	fu_24wk	total4type_fu	clinic_zip	pt_zip
2	1	3	4	7	9	9	9	12	98405	98405
3	2	4	6	7	8	8	8	8	98405	98403
4	0	G			<u> </u>	0	0 Zin	code of clinic	98405	98445
5	3	within 16 weeks after 0 0 0						98405	98332	
6	0							00405	<mark>98</mark> 405	
7	2	z tre	atment e	enrollmer	nt.	2	2	Zip code o	of patient	3402
8	1	2	5	6	8	10	10	14	98405	98418
9	1	1	2	2	2	2	2	2	98499	98406
10	0	0	1	2	2	2	2	6	98405	98404
11	0	0	0	0	0	0	0	0	98405	98402
12	1	1	2	2	4	4	4	4	98405	98405
13	1	Question: Does the distance between the							98404	98404
14	2								98499	98498
15	0	patient's home and clinic influence the number							98499	98445
16	1	of follow ups, and therefore treatment efficacy?							98499	98405
17	1	of Johow ups, and therefore treatment efficacy?							98499	98498
18	1	3	3	3	3	3	3	3	98499	98499
19	1	1	4	5	7	7	7	7	98499	9 <u>8</u> 371

Program to assess treatment efficacy

This program reads an Excel spreadsheet whose penultimate

and antepenultimate columns are zip codes.

It adds a new last column for the distance between those zip

codes, and outputs in CSV (comma-separated values) format.

Call the program with two numeric values: the first and last # row to include.

The output contains the column headers and those rows.

Libraries to use

import random

import sys

import xlrd # library for working with Excel spreadsheets import time from gdapi import GoogleDirections

No key needed if few queries

```
gd = GoogleDirections('dummy-Google-key')
```

wb = xlrd.open_workbook('mhip_zip_eScience_121611a.xls')
sheet = wb.sheet_by_index(0)

User input: first row to process, first row not to process
first_row = max(int(sys.argv[1]), 2)
row_limit = min(int(sys.argv[2]+1), sheet.nrows)

headers = sheet.row_values(0) + ["distance"]
print comma_separated(headers)

for rownum in range(first row,row limit): row = sheet.row values(rownum) (zip1, zip2) = row[-3:-1]if zip1 and zip2: # Clean the data zip1 = str(int(zip1))zip2 = str(int(zip2))row[-3:-1] = [zip1, zip2] # Compute the distance via Google Maps try: distance = gd.query(zip1,zip2).distance except: print >> sys.stderr, "Error computing distance:", zip1, zip2 distance = "" # Print the row with the distance print comma_separated(row + [distance]) # Avoid too many Google queries in rapid succession time.sleep(random.random()+0.5)

23 lines of executable code!

1. A variable contains a value

3. Different types act differently

2. Java performs operations

4. A program is a recipe

CORNBREAD

Colvin Run Mill Corn Bread 1 cup cornmeal 1 cup flour ½ teaspoon salt 4 teaspoons baking powder 3 tablespoons sugar 1 egg 1 cup milk ¼ cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.

Don't panic!

- This workshop is for people who have never programmed
 - (If you have programmed, you don't belong here.)
- Ask questions!
 - This is the best way to learn

1. A variable contains a value

Types of values (4 basic types)

- Integers (int): -22, 0, 44
 - No decimal points
- Real numbers (double): 2.718, 3.1415
- Strings (String): "I love Python"
- Truth values (boolean): True, False

George Boole

Variable Declaration

- When you declare a Java variable, you also declare it's type.
- Everything stored in that variable must be of the correct type
- Variable Declaration:

int x;

String myName; double pi;

Variable Assignment

- How do we store values?
 - Variables
- Assignment Operator
 - x= 5
 - NOT an equality!
 - In Java, equality is represented as ==
- "x now holds the value 5"
- In the future, x may be assigned a different value

Declaration and Assignment

- Each variable is declared only once
- Can be assigned many times
- Can declare and assign a variable in one line
- In Java, you must assign a variable at least once before you can use it.

```
int x = 5;
int y;
String myName = "Steven"
```

Declaration and Assignment

```
int x = 5;
int y;
String myName = "Steven";
System.out.println(x);
System.out.println(y);
6 = y;
y= x;
System.out.println(y);
x= 6;
System.out.println(x);
System.out.println(y);
myName = "Barney";
System.out.println(myName);
```

VarType.java

Naming Rules

Names are case sensitive and cannot start with a number. They can contain letters, numbers, and underscores.

bob Bob _bob _2_bob_ bob_2 BOB There are some reserved words:

String, int, double, class, etc.

int class = 5; int String = 7;

```
Changing existing variables
 ("re-binding" or "re-assigning")
int x = 2 - 1;
System.out.println(x);
int y = x;
System.out.println(y);
x = 5;
System.out.println(x);
System.out.println(y);
```

```
Changing existing variables
 ("re-binding" or "re-assigning")
int x = 2 - 1;
System.out.println(x);
int y = x;
System.out.println(y);
x = 5;
System.out.println(x);
System.out.println(y);
```

- "=" in an assignment is *not* a promise of eternal equality
- Evaluating an expression gives a new (copy of a) number, rather than changing an existing one

How an assignment is executed

- 1. Evaluate the right-hand side to a value
- 2. Store that value in the variable

Important: Integers vs Doubles

- Modulo operator (for Integers)
- 13 % 4
- 12 % 4

intExpressions.java

Important: Integers vs Doubles

NOTES: Doubles can read ints, ints can't read doubles Operation values are based on types of operands

doubleExpressions.java

2. Java performs operations

Arithmetic Operations (Already seen)

22 * 10
22 / 10
22 .0 / 10
(5 +6) * (4 -3)

$$x = 3$$

 $y = x + 2$
 $z = x + y$
//return type?
//return type?

More operations: Conditionals (return true/ false)

```
boolean truth;
int x;
                         Operators: !, &&, ||, <, >=, ==, !=
truth = 22 > 4;
                         Constants: true, false
truth = 22 < 4;
truth = (x < 0);
truth = 22 == 4;
truth = (x = 100);
x = 100;
truth = (x == 200);
truth = (x == 100);
truth = (x > 5);
truth = !false;
truth = !truth;
truth = !(x \ge 200);
truth = 3 < 4 \&\& 7 < 6;
truth = 4 < 3 | | 5 < 6;
int temp = 72;
boolean water is liquid = temp > 32 && temp < 212;
```

conditions.java

More operations: String

```
String x;
    String y;
    String z= " that I have ever";
    String a= "Workshop";
    String b= " seen";
    String c= "gave the";
    String d= " best";
    x = "Steven";
    y = " Jacobs";
//Concatenation
    String sentence = x + y + c + d + a + z + b;
//Length
    int size = z.length();
//Contains
    boolean hasPH = x.contains("ph");
    boolean hasV = x.contains("v");
//Equality for Strings
    boolean isSteven = x.equals("Steven");
```

strings.java

There are many more operations available...

3. Different types act differently

Operations behave differently on different types

```
double x = 3;
        double y = 2.8;
        int i = 4;
        int j = 5;
        String a = "Doctor";
        String b = "Who";
        boolean one = true;
        boolean two = false;
        1. j = x + i;
        2. y = x + i;
        3. one = j + 3;
        4. one = 1;
        5. i = true;
        6. b = a + b + i;
        7. i = a + j;
Which two of these will work?
```

typeComparisons.java

Type Conversion

```
double y = 2.8;
int i = 4;
String b = "42";
i = (int) y;
y = (double) i;
i = Integer.parseInt(b);
y = 3.14;
i = (int)y + Integer.parseInt(b);
```

4. A program is a recipe

CORNBREAD Colvin Run Mill Corn Bread 1 cup cornmeal 1 cup flour 1/2 teaspoon salt 4 teaspoons baking powder 3 tablespoons sugar 1 egg 1 cup milk 1/4 cup shortening (soft) or vegetable oil Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan.

Bake at 425 degrees for 20-25 minutes.

What is a program?

- A program is a sequence of instructions
- The computer executes instructions in order

Programming basics

code or source code: The sequence of instructions in a program.

- syntax: The set of legal structures and commands that can be used in a particular programming language.
- **output**: The messages printed to the user by a program.
- **console**: The place where the user interacts with the program
 - Some source code editors pop up the console as an external window, and others contain their own console window.

White Space, curly brackets and semicolons

- White Space in ignored in Java
 - Show ugly example
- Curly Brackets open and closes classes, functions, loops, etc.
- Semicolons end statements
- Good practice
 - Indent things with tabs

Java Classes and "main"

- In Java, code is broken into "classes"
- A class can be seen as an application
- The "main" function within a class is the one that will execute when the class is run.
- Simple square application example
- Getting user input:

System.console().readLine()

- Converting input String to int:
 - Integer.parseInt("34")
- Printing to user:
 - System.out.println("Hello John");
 - System.out.print("Please enter x:");

Compiling and interpreting

 Many languages (Java) require you to compile (translate) your program into a form that the machine understands.

Others (Python) turn code directly into machine instructions.

Compile and Run Java

- Create a class in a .java file (e.g. application.java)
- Include a main function in your class
- Compile your code
- javac application.java
- Now there will be a .class file (e.g. application.class)
- Run the class (important: based on class name not file name)
 class application {
- java application

```
lass application {
  public static void main(String[] args) {
    System.out.print("Enter y:");
    int y = Integer.parseInt(System.console().readLine());
    int squared = y * y;
    System.out.println(squared);
  }
```

1. A variable contains a value

3. Different types act differently

2. Java performs operations

4. A program is a recipe

CORNBREAD

Colvin Run Mill Corn Bread 1 cup cornmeal 1 cup flour ½ teaspoon salt 4 teaspoons baking powder 3 tablespoons sugar 1 egg 1 cup milk ¼ cup shortening (soft) or vegetable oil

Mix together the dry ingredients. Beat together the egg, milk and shortening/oil. Add the liquids to the dry ingredients. Mix quickly by hand. Pour into greased 8x8 or 9x9 baking pan. Bake at 425 degrees for 20-25 minutes.

Half-time!

Comments

- Start comments with // the rest of line is ignored.
- Can be used to document what the code is doing. This way when someone opens your code, they can see what it is for.

// This is a comment

Software

Online Development

- Cloud 9 (online editor)
 - <u>http://c9.io</u>
 - http://bit.ly/1KIJcEU
- **Local Development**
 - Hello World Install/Tutorial:
 - <u>http://docs.oracle.com/javase/tutorial/getStarted/cupoja</u> <u>va/index.html</u>
 - Features
 - Free versions
 - Multiplatform

Exercise 1:

```
class ex1 {
      public static void main(String[] args) {
      //Get x
      System.out.print("Enter x:");
      int x = Integer.parseInt(System.console().readLine());
      //Get y
      System.out.print("Enter y:");
      int y = Integer.parseInt(System.console().readLine());
      //add them
      int z = x + y;
      //output the result to the user
       System.out.println("x + y =");
      System.out.println(z);
}
```

Exercise 2: Fahrenheit to Celsius:

How could we take as input from the user a Fahrenheit temperature, and then convert it to Celsius?

Mathematical Equation for Celsius: (F-32) × 5/9

Think about: Input and output Integers vs Floats

Exercise 2:

```
class ex2 {
   public static void main(String[] args) {
        //Get farenheit
        System.out.print("Provide the temperature in Fahrenheit:");
        double f = Integer.parseInt(System.console().readLine());
        //compute celsius
        double c = (f-32) * 5 / 9;
        //output the result to the user
        System.out.println("The temperature in Celsius is:");
        System.out.println(c);
}
```

Exercise 3 (If Statement):

```
"if" provides a means of checking whether some condition is met.
Curly brackets contain what should run if the condition is met
if (5 < 6)
   System.out.println("Five is less than six");
}
if (x == "banana") {
   System.out.println("x is banana");
}
if (y \le z) {
   System.out.println("y is less than or equal to z");
   System.out.println("therefore I cannot choose the wine in front of me");
1
```

Exercise 3 (If Statement):

Have the user input a number. If this number is greater than 1000, output a message "Wow that is a big number!"

Exercise 3 (If Statement):

```
class ex3 {
    public static void main(String[] args) {
        //Get number
        System.out.print("Provide a number:");
        int n = Integer.parseInt(System.console().readLine());
        if (n > 1000) {
            System.out.println("Wow that is a big number!");
        }
        //alternatively:
        if (1000 < n) {
            System.out.println("Wow that is a big number!");
        }
    }
}
```

```
"else if" provides a means to check alternate conditions:
Consider this code:
if (n < 5) {
   System.out.println("x is pretty small");
}
if (n < 10) {
   System.out.println("x is average");
}
if (n < 15) {
   System.out.println("x is large");
}
if (n \ge 15) {
   System.out.println("x is huge!");
}
```

```
else if provides a means to check alternate conditions:
Consider this code:
if (n < 5) {
   System.out.println("x is pretty small");
}
else if (n < 10){
   System.out.println("x is average");
}
else if (n < 15) {
   System.out.println("x is large");
}
else {
   System.out.println("x is huge!");
}
```

Let's make a text-based adventure!

```
Start like this:
System.out.print("You are trapped with five dragons.(A)run (B)fight (C)make friends:");
String choice = System.console().readLine();
```

You should output a unique message based on whether the user types A, B, or C

How do you handle when a user types something else?

String equality?

```
class ex4 {
   public static void main(String[] args) {
        //Get choice
        System.out.print("You are trapped with five dragons.(A)run (B)fight (C)make friends:");
        String x = System.console().readLine();
        //print results to the user
        if (x.equals("A")) {
            System.out.println("You cannot escape. You die!");
        else if (x.equals("B")) {
            System.out.println("You cannot win. You die!");
        else if (x.equals("C")) {
            System.out.println("They do not want to be friends. You die!");
        else if (x.equals("cheat")){
            System.out.println("You found the way to cheat. You win!");
        }
        else{
            System.out.println("Invalid choice. You die");
        }
    }
```

Moving Forward...

There are many more tools available that we can't cover here.

If you want to move forward, the next things to look at would be: While loops Incrementing variables For loops Reading/Writing files

Java Editors

- Eclipse
 - http://pydev.org/
- Sublime Text
 - http://www.eclipse.org/
- Why use a code editor
 - Syntax Highlighting
 - Error Detection
 - Auto-completion

Resources

- <u>Hello World Tutorial:</u>
 - <u>http://docs.oracle.com/javase/tutorial/getStarted/cupojava/index.ht</u> <u>ml</u>
- Java Documentation
 - <u>http://docs.oracle.com/javase/7/docs/api/</u>
- GradQuant Resources
 - <u>http://gradquant.ucr.edu/workshop-resources/</u>
- Google
 - Search for "java ..."
- Stack Overflow website
 - <u>http://stackoverflow.com/</u>

GradQuant

- One-on-one Consultations
 - Make appointment on the website
 - <u>http://gradquant.ucr.edu</u>
- More Seminars on Programming
 - Python Fundamentals (Available this quarter)
 - Data Manipulation with Python (Available this quarter)
 - Advanced Python (Offered next quarter)
 - Advanced Java (Offered next quarter)
 - SQL (Available this quarter)
 - <u>http://gradquant.ucr.edu/workshop-resources/</u>

Remember to fill out the seminar survey. Thank you!