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Why Bayesian inference?

There are philosophical reasons rooted in fundamental beliefs
about the purpose of science. But this workshop will focus on the
practical reasons to be Bayesian, given computational methods:

Can approximate frequentist results (or “regularize” results,
depending on your audience)

But Bayesian methods are much more flexible and/or
computationally faster to solve arbitrarily complex models

Easier to state uncertainty about arbitrary functions of
parameters

Natural way to multiply impute missing data (additional
parameters to estimate)
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What is Bayesian inference?

You are probably already familiar with frequentist inference . . .

Philosophy of Frequentist Inference

Probability is an objective property of the external/natural world

Probability is an inherent property of a coin or dice or
population, etc. but cannot ever be observed

Inferring this property requires repeated observation; e.g.,
1,000 coin flips

Reporting results is awkward; can’t report probability of a
heads but instead the probability that an interval will cover
this property
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What is Bayesian inference?

Philosophy of Bayesian Inference

Bayesian inference posits that probability is best conceived of as a
subjective belief

The goal of research is to change beliefs about properties of the
world; Bayesian analysis is a way to inform your audience how they
rationally should change their beliefs after observing data

Bayes Rule:

Posterior Beliefs = Prior Beliefs×Data Likelihood
Probabilty of the Data



Overview Analytical methods Computational methods Practical advice

Bayes rule illustration: testing for a disease

You run a test on a patient and you get an ALERT! Here is what
we know about the test procedure.

D = “The patient has the disease”

DC = “The patient does not have the disease”

A = “The test gave an alert”

Incidence of the disease in a population, p(D) = 0.02
(“Prior”)

Probability of the test giving an alert given the presence of
the disease, p(A|D) = 0.95 (“Likelihood”)

Probability of the test giving an alert in the absence of the
disease (false positive), p(A|Dc) = 0.03
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Bayes rule: testing for a disease (cont.)

If test is positive (Alert occurs) use Bayes’ Rule:

p(D|A) = prior×likelihood
prob of alert

= p(D)p(A|D)
p(D)p(A|D)+p(Dc )p(A|Dc )

= 0.02×0.95
0.02×0.95+0.98×0.03 = 0.38

⇒ updated subjective probability that patient has the disease

Patient went from subjective probability of 0.02 to 0.38 of
having the disease

Physician learned a lot from only one observation (!)

But, just because test is positive does not mean the patient
certainly has the disease
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Philosophical benefits of Bayesian analysis

If you agree with the subjective view of probability, cool things
happen:

A single observation can be quite meaningful

Reporting results is intuitive; e.g., probability the patient has
the disease (or, probability of a heads; probability β1 ≤ 0)

We have beliefs/information about probabilities before we
observe data, so that information can be incorporated
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Doing Bayesian statistical analysis

General form of Bayes rule for statistical modeling:

p(θ|y) = p(θ)p(y |θ)
p(y)

In words, the posterior density (beliefs after seeing the data) is
proportional to the prior density (beliefs before seeing the data)
times the likelihood of observing the data given those prior beliefs,
divided by a normalizing constant.

We can drop the normalizing constant that makes the posterior a
true probability density

p(θ|y) ∝ p(θ)p(y |θ)
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Doing Bayesian statistical analysis, closed-form solutions

The easiest way to derive the posterior analytically is using
“conjugate” priors

A conjugate prior for a likelihood yields a posterior in the
same form as the prior

Example, conjugate prior for a binomial distribution is the
beta distribution; or normal-normal . . .



Overview Analytical methods Computational methods Practical advice

Closed-form Example: Conjugate Normal Prior

Analytical solution for conjugate normal prior

Let yi
iid∼ N(µ, σ2), i = 1, . . . , n, with σ2 known, and

y = (y1, . . . , yn)′. If µ ∼ N(µ0, σ
2
0) is the prior density for µ, the µ

has posterior density,

µ|y ∼ N

(
µ0σ

−2
0 +y n

σ2

σ−2
0 + n

σ2

,
(
σ−20 + n

σ2

)−1)
Results:

Posterior mean is a weighted average of the prior and data

Posterior variance is the sum of the prior precision and the
data precision

Note: Bayesian and MLE converge with diffuse priors and/or
lots of data
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Doing Bayesian statistical analysis in the real world

Sadly, most modeling problems do not lend themselves to
closed-form solutions, especially complex multilevel (random
effect) models . . .
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Doing Bayesian statistical analysis in the real world

Bayesian computational methods allow you to solve arbitrary,
complex models much more flexibly and/or computationally faster
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Computational Bayesian statistics: MCMC

“Bayesian estimation using Gibbs sampling” (WinBUGS, OpenBUGS,
JAGS, Stan, etc.)

Gibbs sampling: sample an estimate from a candidate
posterior distribution for each parameter, conditional on the
current estimate of all other parameters

MCMC = “Markov Chain Monte Carlo” = run the Gibbs
sampler repeatedly until the parameters estimates converge to
the posterior distribution

Start at an arbitrary set of initial values
Discard “burn-in period” draws
Save and analyze “stationary period” draws
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Computational Bayesian statistics: MCMC

Table: Simulated Posterior Distribution

β0 β1 Y [2]

Burn-in Period
t0 20 -200 12
t1 17 -105 65
t3 2 -2 99
t4 0.9 1.5 86
. . .
t9997 0.7 1.7 87
t9998 0.8 1.8 89
t9999 0.6 1.7 95
t10000 0.6 2.0 91
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Computational Bayesian statistics: MCMC

Table: Simulated Posterior Distribution

β0 β1 Y [2]

Stationary Period
t10001 0.7 1.9 89
t10002 0.6 1.5 87
t10003 0.8 1.6 89
t10004 0.5 1.8 83
t10005 0.7 2.1 99
. . .
t10997 0.4 2.2 87
t10998 0.7 1.7 97
t10999 0.6 1.9 99
t11000 0.9 1.5 102
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Computational Bayesian statistics: MCMC (cont.)

Result is a simulated posterior distribution: computational
approximation of the posterior

The vector of draws post-convergence for each parameter is
the marginal posterior distribution

Summarize (mean, SD, 95% intervals) and plot densities

Trivial to create sampling distributions of functions of

parameters ( l̂n(β0)
1+sin(β1)

)

Natural way to impute missing data for correct standard errors



Overview Analytical methods Computational methods Practical advice

Computational Bayesian statistics: MCMC (even still
cont.)

MCMC procedure

1 Specify model (likelihood and priors) with WinBUGS code

2 Load data and compile model

3 Provide initial values for parameters, latent variables, missing
data

4 Run model for an initial “burn-in” period until MCMC
converges on the posterior distribution

5 Save a sample of draws for parameters of interest

6 Summarize marginal distributions, plots, statistical tests
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Example

Model of the mean

Likelihood:
massi ∼ φ(µ, τ)

}
1 ≤ i ≤ n.obs IID assumption

Priors:
µ ∼ dunif(0, 5000) Flat postive prior (“informative” prior!)
τ = 1

σ2 Precision is inverse of variance
σ2 = σ × σ Define variance in model
σ ∼ dunif(0, 100) Flat positive prior

Let’s run this model in OpenBUGS . . .
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Common problems....

Common problems and some advice

Always run multiple chains (usually three) in order to test
convergence using BGR diagnostic

BGR diagnostic assesses within-to-between chain variance
(assumes overdispersed/random initial values)
Consider both mathematical and empirical identification (just
because you can write it down does not mean you should
estimate it)
Best to start with simple model and build up complexity

Assess burnin period, mixing carefully

Be sure there are no missing data on RHS

Read the manual; and Gelman and Hill (2006) is a great
resource for multilevel modeling

Learn scripting language
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R interface

Using OpenBUGS with R

In practice, you want to store your data and analyze/graph results
within R (or Stata or SAS etc.)

Once you know how to use OpenBUGS you can read
documentation to these R packages:

R2OpenBUGS, BRugs = Interact with OpenBUGS within R

CODA = Suite of tools to assess convergence and describe
results
BRugs installs/loads all three

Prepare data and inits text files to read directly into OpenBUGS

Read OpenBUGS output as MCMC object for use in CODA and
presenting results

Call OpenBUGS from R for automating Bayesian analysis
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