Introduction to the General Linear Model

GradQuant Workshop
Fundamental Issues of the GLM

- Three basic questions asked:
 - Is there a relationship between variables?
 - What direction is this relationship?
 - What is the size of this relationship

- Modeling the data
- Assessment of error
- Model comparisons
Terminology of the GLM

- “General” refers to the many tests encompassed by GLM
- Our Y variable is the outcome, predicted, or dependent variable
- Our X variable(s) is the regressor, predictor, or covariate
- More loose terms
 - Typically called regression with continuous predictors
 - ANOVA with categorical predictors
 - ANCOVA with at least one of each
 - But really, they’re the same thing
Predicting scores

- Data = Model + error
- Modeling begins with a very simple value: $Y = \bar{Y} + e_i$
- Model fit is judged according to the ordinary least squares estimation
 $\frac{\sum(Y - \bar{Y})^2}{N} =$ variance in the residuals
- Relationship between accuracy, correlation, and residuals
- This model is used for most common statistical techniques
What is the best predictor?

- Imagine we had no predictor variables...what would our best guess be?
- \(\frac{\Sigma (\bar{y} - \bar{y})^2}{N} \) is at a minimum when using the mean
- When using predictors we would use the “conditional” mean
- With perfect prediction, observed and expected values are the same- \(\frac{\Sigma (\bar{y} - \bar{y})^2}{N} \) is zero
Bivariate regression

- Regression equation forms basis of the GLM
- Variables can be included to reduce the residual error
- $Y_i = b_0 + b_1 X_{i1} + e_i$
 - b_0 represents the expected values when $X = 0$
 - b_1 is the expected change in Y for a one unit change in Y
 - e_i = the error after taking model prediction into account
- This regression equation represents the best fit line
The best fit line

Data

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

The model and graph

\[\hat{Y} = 10.27 - 0.78X \]
Correlation

- Measure of linear association between X and Y, addresses the three questions of the GLM
- Regression parameters can be used to calculate correlation
 \[r_{xy} = b_1 \frac{s_y}{s_x} \]
- Standardized regression equation:
 \[Z_y = rZ_x \]
- Correlation of previous data is \(r = -0.90 \)
 \[\bar{Z}_y = -0.90Z_x \]
- With one predictor, \(r \) is also equal to correlation between predicted and observed Y's.
Variance explained

- We can make one modification to our model
 - $\text{Var(data)} = \text{Var(model)} + \text{Var(error)}$
- Our model will tell us the proportion of variance explained
 - $R^2 = 1 - \frac{\text{Var(error)}}{\text{Var(data)}}$
 - $r^2 = .80$
- This is applied to the multivariate case, and used to evaluate overall model fit
Traditional t-test

- A more specialized form of the regression
- \(r = \frac{\sqrt{t^2}}{\sqrt{t^2 + df}} \)
- Equivalent to \(Y_i = b_0 + b_1X_{i1} + e_i \)
 - Where \(b_1 \) is equal the mean difference between groups
 - \(e_i \) is the within group variations
- The goal of a t-test is the same goal as that of OLS regression
- All information from a t-test can be gained from regression and vice versa
<table>
<thead>
<tr>
<th>Types of t tests</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>One sample t-test</td>
<td>Test whether the population mean is different from a constant</td>
</tr>
<tr>
<td></td>
<td>1 distribution</td>
</tr>
<tr>
<td>Paired Samples t-test</td>
<td>Test whether the population mean of differences between paired scores is equal to 0</td>
</tr>
<tr>
<td></td>
<td>2 distributions</td>
</tr>
<tr>
<td></td>
<td>Correlation/relationship exists</td>
</tr>
<tr>
<td>Independent Samples t-test</td>
<td>Test the relationship between 2 categories and a quantitative variables</td>
</tr>
<tr>
<td></td>
<td>2 distributions</td>
</tr>
<tr>
<td></td>
<td>NO relationship exists</td>
</tr>
</tbody>
</table>
Sample Data

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>0</td>
<td>1.0</td>
</tr>
<tr>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>0</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>7.0</td>
</tr>
<tr>
<td>1</td>
<td>8.0</td>
</tr>
<tr>
<td>1</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>1</td>
<td>11.0</td>
</tr>
<tr>
<td>1</td>
<td>9.0</td>
</tr>
</tbody>
</table>

```r
# Welch Two Sample t-test data: Y by X

t = -3.215, df = 10.347, p-value = 0.008871
0.95 percent confidence interval: -6.365351 -1.167982

Call: lm(formula = Y ~ X, data = data)

Coefficients:

| Estimate | Std. Error | t value | Pr(>|t|) |
|----------|------------|---------|-------|
| (Intercept) | 2.8889 | 0.8284 | 3.487 | 0.00305 ** |
| X | 3.7667 | 1.1716 | 3.215 | 0.008871 |

Residual standard error: 2.485 on 16 degrees of freedom
Multiple R-squared: 0.3925, Adjusted R-squared: 0.3545
F-statistic: 10.34 on 1 and 16 DF, p-value: 0.008871
```
Effect Size

- Independent Sample Equation – Use Total N
 \[d = \frac{\bar{X}_1 - \bar{X}_2}{\hat{S}} \]
 \[\hat{S} = \sqrt{\frac{N_1}{2} (\hat{S}_{\bar{X}_1 - \bar{X}_2})} \]

- Paired Sample Equation – N is number of pairs
 \[d = \frac{\bar{X} - \bar{Y}}{\hat{S}_D} \]
 \[\hat{S}_D = \sqrt{N (S_D)} \]

We also get an correlation!

\[r = \frac{t^2}{\sqrt{t^2 + df}} \]
Confidence Intervals

- **Independent Samples Equation**

\[
LL = \left(\bar{X}_1 - \bar{X}_2 \right) - t_\alpha \left(S_{\bar{X}_1 - \bar{X}_2} \right)
\]

\[
UL = \left(\bar{X}_1 - \bar{X}_2 \right) + t_\alpha \left(S_{\bar{X}_1 - \bar{X}_2} \right)
\]

- **Paired Samples Equation**

\[
LL = \left(\bar{X} - \bar{Y} \right) - t_\alpha \left(S_D \right)
\]

\[
UL = \left(\bar{X} - \bar{Y} \right) + t_\alpha \left(S_D \right)
\]
ANOVA

- ANOVA is another specific form of regression
- Assesses the relationship between outcome and multiple categories
- Capable of doing everything a t-test can do, $F = t^2$ with 1 df in numerator
- Most parts of ANOVA have direct analogs in regression
- The $\eta^2 = \frac{SS_{model}}{SS_{total}}$ statistic used in ANOVA is the value of R^2
<table>
<thead>
<tr>
<th>Hypothesis testing with ANOVA</th>
</tr>
</thead>
</table>

T test
- Research question: the effect of Drug X on depression
 - Give 1 group a dosage of drug X and another gets zero dosage
- State IVs and DVs
- State hypotheses
- Calculate t statistic
- Compare to sampling distribution for t
- Reject or retain H0

ANOVA
- Research question: the effect of Drug X on depression
 - You give 1 group high dosage of Drug X, a 2nd group low dosage, and a 3rd group gets zero dosage
- State IVs and DVs
- State your hypothesis
- Calculate F ratio
- Compare to sampling distribution for F
- Reject or retain H0
- Follow up multiple comparison test
Sample data from ACT and education

<table>
<thead>
<tr>
<th>Education level</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than high school</td>
<td>27.48</td>
<td>5.21</td>
</tr>
<tr>
<td>High school</td>
<td>27.49</td>
<td>6.06</td>
</tr>
<tr>
<td>Some college</td>
<td>26.98</td>
<td>5.81</td>
</tr>
<tr>
<td>Completed college</td>
<td>28.29</td>
<td>4.85</td>
</tr>
<tr>
<td>Some graduate work</td>
<td>29.26</td>
<td>4.35</td>
</tr>
<tr>
<td>Completed graduate degree</td>
<td>29.60</td>
<td>3.95</td>
</tr>
</tbody>
</table>
ANOVA vs. Regression

Call: lm(formula = ACT ~ as.factor(education))
Residuals: Min 1Q Median 3Q Max
-23.9773 -3.2945 0.5263 3.7055 9.0227
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.4737 0.6319 43.480 < 2e-16 ***
Education1 0.0152 0.9513 0.016 0.98725
education2 -0.4964 0.9573 -0.519 0.60425
Education3 0.8209 0.6943 1.182 0.23748
education4 1.7872 0.7511 2.379 0.01761 *
education5 2.1292 0.7488 2.844 0.00459 **
Residual standard error: 4.771 on 694 degrees of freedom
Multiple R-squared: 0.02887, Adjusted R-squared: 0.02187
F-statistic: 4.126 on 5 and 694 DF, p-value: 0.001063

summary(aov(ACT~as.factor(education)))

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>470</td>
<td>93.90</td>
<td>4.126</td>
<td>0.00106 **</td>
</tr>
<tr>
<td>694</td>
<td>15794</td>
<td>22.76</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Residuals 694 15794 22.76

\[\eta^2 = \left(\frac{SS_{model}}{SS_{total}} \right) = \left(\frac{470}{470+15794} \right) = 0.0288 \]
What have we seen so far?

- Models that look like competitors really are not
- Even comparisons of means are using OLS
- Better models are those that reduce residual error
- Effect sizes are analogous across different methods as well
Comparing models

- Remember:
 - Data = Model + error
 - The goal of adding predictors should be to reduce the error
 - $\Delta R^2 = R^2_{\text{model}_2} - R^2_{\text{model}_1}$
 - If additional predictors reduce error, they should be included
 - Parsimonious models should be preferred
Multiple Regression

- $Y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + \ldots b_k X_{ik} + e_i$
- The regression equation has no limit on predictors
- Each of these coefficients represents partial coefficients
- b_0 is now the predicted value when all X’s are zero
- Can build models simultaneously or hierarchically
Partial coefficients

- We are often interested in knowing *partial* relationships
- Tells us unique relationship or contribution
- Necessary for making causal inferences
- Several different measures of partial coefficients
Partial coefficients

\[
\frac{B+C}{A+C+E+B} = r_{y2}^2
\]

\[
\frac{B}{A+C+E+B} = r_{y(2z1)}^2 = sr_{2}^2
\]

\[
\frac{B}{B+E} = r_{y2z1}^2 = pr_{2}^2
\]
Standardized Regression

- Often our units don’t have substantive meaning
- We can z-score our variables to give more meaning
- Standardized slopes include a special meaning
- Denoted as β
- Inferences and model fit will remain the same as unstandardized
More multiple regression

- No statistical difference between covariate and predictor in regression
- Predictors can be either continuous or categorical
- Typically $r > \beta$
- But $r < \beta$ can happen
- Can proceed hierarchically or simultaneously, depending on research question
Modeling Interactions

- Typically modeled as a product of predictors
- $Y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + b_3 X_{i1}X_{i2} \ldots b_k X_{ik} + e_i$
- Indicate the extent to which the effect of one variable relies on another variable
- Positive sign represents synergy, negative represents dampening
The GLM can handle non-linearity

- If need a non-linear model, we add one more term
- \(Y_i = b_0 + b_1 X_{i1} + b_2 X_{i1}^2 + e_i \)
- Can easily interpret sign of \(b_2 \)
- Important to center
- Parameters also become more interpretable with centered variables
Nonlinearity may not be a curve

- Sometimes data fit two curves together
- $\tilde{Y} = -2 + .5X$ When $x \leq 2$
- $\tilde{Y} = -2 + 1.5X$ When $x > 2$
- Need to be careful about overfitting
Analysis of Covariance

- Often used when dealing with continuous and categorical predictors
- Long history of figuring out effect of condition at constant levels of other variable – HA!
- Begin by adjusting outcome based on level of covariate (continuous)
- Test association with remaining categorical variable
- Reduces error variance and clarifies relationship
- Regression doesn’t care, all variables are welcome
Regression to the mean

- Extreme scores on X are associated with less extreme scores on Y
- This doesn’t mean there is less variability
- Occurs whenever $r < 1.0$
- Can deceive us into thinking effects exist when they really don’t
- Indicates the importance of controlling for a previous time point
Assumptions of the GLM

- Normality of residuals
- Outcome must be continuous
- Independence of observations
- Homoscedasticity
- No measurement error
Normality of residuals

- Likely indicates misspecified model
- Curve might be more appropriate than a line
- Could mean violation of our second assumption
- Best course is to figure source of non-normality
Discrete outcomes

- Entire family of models for outcomes that are not continuous
 - Logistic regression
 - Multinomial logistic regression
 - Ordinal logistic regression
 - Poisson regression or negative binomial for counts
- All rely on maximum likelihood estimation
- Often have the other assumptions as well
Nonindependence

- Disaggregate variables (known as the atomistic fallacy)
- Aggregate up to the group level (ecological fallacy)
- Two stage least squares
- Cluster robust standard errors
- Multilevel models
Heteroscedasticity

- Often a byproduct of violations
- Check for subgroup differences
- Transform variables
- Adjustment of the standard errors
- Weighted least squares
- But really, problem is not that large
Measurement error

- In the bivariate case, will attenuate relationships
- In the multivariate case
- Could correct for unreliability (but need proper reliability estimates!)
- Could always try to get more reliable measures
- Latent variable modeling will correct this issue
Orthogonality

- ANOVA assumes uncorrelated factors
 - Also model must be balanced
- If predictors are correlated, model is not orthogonal
- Regression easily handles correlate X's
- If unbalanced, or factors are correlated, then advantages of regression become more pronounced
Coding schemes for regression

- Dummy coding
- Effects coding
- Contrast coding
Dummy coding

- Require the use of a “reference group”
- Reference group = 0, all others = 1
- G -1 variables are needed
- Intercept is the mean of reference group
- Slopes represent means of other groups
Example Dummy coding

\[\bar{Y} = b_0 + b_1 Dog + b_2 Cat \]
- Because bird is zero, \(b_0 \) is the mean for birds
- The equation for Dog:
 \[Mean\ Dog = b_0 + b_1 (1) + b_2 (0) \]
- The equation for Cat:
 \[Mean\ Cat = b_0 + b_1 (0) + b_2 (1) \]
- \(b \)'s represent mean differences from the bird group

<table>
<thead>
<tr>
<th>Variable</th>
<th>(X_1)</th>
<th>(X_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cat</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bird</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Effects Coding

- Requires a “throw away” group
- This group = -1, all others 1
- Still need G -1 variables
- Intercept and slopes change meaning
- Closest to what ANOVA is doing
- Most information is redundant with dummy coding
Example Effects Coding

- $\bar{Y} = b_0 + b_1 \text{Dog} + b_2 \text{Cat}$

- $\text{Mean Bird} = b_0 + b_1(-1) + b_2(-1)$
- $\text{Mean Bird} = b_0 - b_1 - b_2$

- $\text{Mean Dog} = b_0 + b_1(1) + b_2(0)$
- $\text{Mean Dog} = b_0 + b_1$

- $\text{Mean Cat} = b_0 + b_1(0) + b_2(-1)$
- $\text{Mean Cat} = b_0 + b_2$

Grand mean:

- $\overline{\text{Bird+Dog+Cat}}$
- $\frac{3}{3}(b_0b_1b_2) + b_0 + b_1 + b_0 + b_2$
- $\frac{3b_0 + b_1 - b_1 + b_2 - b_2}{3}$
- $\frac{3b_0}{3} = b_0$

• Intercept is grand mean, slopes are deviations from GM

<table>
<thead>
<tr>
<th>Variable</th>
<th>X_1</th>
<th>X_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cat</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Bird</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Contrast Coding

- Requires more specific hypotheses about data
- Several necessary or desirable properties
 - Contrasts must sum to zero
 - Distances of 1 preferable (for interpretable coefficients)
 - Sum of the product of contrasts should equal 0 (this ensures orthogonality)
 - Still need G-1 variables for orthogonality
- Parameters are now differences between contrast groups
- Intercept is more difficult to interpret
- Can give different results from dummy and effects coding
Example Contrast Coding

- Look at what we are predicting here and if we satisfy our requirements
- \(\text{Mean Bird} = b_0 + b_1(-2/3) + b_2(0) \)
- \(\text{Mean Bird} = b_0 - \frac{2}{3b_1} \)
- \(\text{Mean Cat} = b_0 + b_1(1/3) + b_2(1/2) \)
- \(\text{Mean Cat} = b_0 + \frac{1}{3b_1} + \frac{1}{2b_2} \)
- \(\text{Mean Dog} = b_0 + b_1 \left(\frac{1}{3} \right) - b_2(1/2) \)
- \(\text{Mean Dog} = b_0 + \frac{1}{3b_1} - \frac{1}{2b_2} \)
- What do our parameters mean in this context?

<table>
<thead>
<tr>
<th>Variable</th>
<th>(X_1)</th>
<th>(X_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog</td>
<td>1/3</td>
<td>-1/2</td>
</tr>
<tr>
<td>Cat</td>
<td>1/3</td>
<td>1/2</td>
</tr>
<tr>
<td>Bird</td>
<td>-2/3</td>
<td>0</td>
</tr>
</tbody>
</table>
Causality

\[Y_i = b_0 + b_1 X_{i1} + b_2 X_{i2} + ... b_k X_{ik} + e_i \]

- This *implies* we know causal relationship
- Statistical control is better than nothing
- But model misspecification is a major issue
- Causality is in design, not analysis
- In some contexts, this may not matter